《机器学习》周志华 读书笔记

本文介绍了模型评估与选择的重要概念,如经验误差、过拟合与欠拟合,详细讲解了留出法、交叉验证法、自助法等评估方法,并探讨了错误率、精度、查准率、查全率、F1分数、ROC曲线和AUC等性能度量标准。
摘要由CSDN通过智能技术生成

第一章:绪论

泛化能力:学到模型适用于新样本的能力。衍生:泛化误差

归纳偏好:算法在机器学习过程中对某种假设的偏好

“奥卡姆剃刀”原则:若有多个假设与观察一致,则选最简单的那个

NFL定理:没有免费的午餐。算法没有优劣好坏,针对具体问题具体分析

第二章:模型评估与选择

2.1经验误差与过拟合P23

过拟合:为了得到一致假设而使假设变的过度复杂。模型过度拟合,在训练集上表现好,测试集上效果差。

欠拟合:模型拟合不够,在训练集上表现效果差。

原因及解决办法:

  过拟合:

1:模型过于复杂→减少模型复杂度,增加正则化项,L1范数或L2范数

2:特征选取不合理→人工筛选特征,使用特征选择算法

  欠拟合:

1:模型过于简单→增加模型复杂度eg、使用线性模型拟合二次曲线数据

2:特征集过少、数据集过少、抽样数据不合理

2.2评估方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值