最长单调递增子序列

单调子序列包含有单调递增子序列和递减子序列,不失一般性,这里只讨论单调递增子序列。首先,从定义上明确我们的问题。给定序列a1, a2, …, an,如果存在满足下列条件的子序列

ai1<=ai2<=…<=aim, (其中i1<i2<…<im)

即称为一个原序列的长度为m的单调递增子序列,那么,现在的问题是我们要找出一个序列的最长的单调递增子序列。

   

直观上来说,一个序列Sn,它有2n个子序列,枚举所有的子序列,找出其中单调递增的序列,然后返回其中最长的,这样我们的问题就解决了。当然,这个直观的算法在时间上为O(2n*n),它的复杂度增长太快了,所以,我们还应该做得更好一些。

   

于是,我们换个角度思考。假设我们对Sn排序(递增),得到Sn’。那么,Sn和Sn’的最长公共子序列Cm就是我们要求的最长单调递增子序列(如果你不清楚最长公共子序列的定义,just google it)。为什么?假设Cm’是Sn的最长单调子列,且Cm’!=Cm, Cm’的长度大于Cm。由于Cm’是递增的,并且Cm’的每一个元素都来自Sn,所以Cm’一定是Sn’的子列,而Cm’又是Sn的子列,所以Cm’是Sn和Sn’的公共子列,故Cm’的长度一定小于Cm,这与假设矛盾,所以Cm是最长单调子列。理论上我们的算法是正确的,复杂度方面,运用动态规划(dynamic programming)来求解LCS(最长公共子列,Longest-Common-Subsequence),时间上是O(n2),空间上也是O(n2)。于是,对Sn排序需要nlogn的时间,而LCS需要n2,最后,我们的算法时间上是O(n2)。

   

可以看到,通过上面的改进,我们的算法效率得到了很大的提升(从指数增长到多项式增长)。不过,程序设计的乐趣就是它会不断地给我们一些惊喜,所以,就此打住不是我们该做的,于是,更好的算法应该是存在的。

   

对于序列Sn,考虑其长度为i的单调子列(1<=i<=m),这样的子列可能有多个。我们选取这些子列的结尾元素(子列的最后一个元素)的最小值。用Li表示。易知

L1<=L2<=…<=Lm

如果Li>Lj(i<j),那么去掉以Lj结尾的递增子序列的最后j-i个元素,得到一个长度为i的子序列,该序列的结尾元素ak<=Lj<Li,这与Li标识了长度为i的递增子序列的最小结尾元素相矛盾,于是证明了上述结论。现在,我们来寻找Sn对应的L序列,如果我们找到的最大的Li是Lm,那么m就是最大单调子列的长度。下面的方法可以用来维护L。

   

从左至右扫描Sn,对于每一个ai,它可能

(1)    ai<L1,那么L1=ai

(2)    ai>=Lm,那么Lm+1=ai,m=m+1 (其中m是当前见到的最大的L下标)

(3)    Ls<=ai<Ls+1,那么Ls+1=ai

   

扫描完成后,我们也就得到了最长递增子序列的长度。从上述方法可知,对于每一个元素,我们需要对L进行查找操作,由于L有序,所以这个操作为logn,于是总的复杂度为O(nlogn)。优于开始O(n2)的算法。这里给出我的一个实现:(算法并没有返回具体的序列,只是返回长度)


#include <fstream>
#include <iostream>
using namespace std;

void OutputArray( int * data, int len){
	for( int i=0; i<len; i++){
		cout << data[i] <<" ";
	}
	cout << endl;
}

template<typename T>
int BSearch(const T* S, int size, const T e )
{
	int low = 0;
	int high = size-1;
	while( low <= high )
	{
		int mid = (low+high)/2;
		if( S[mid] <= e)
			low = mid+1;
		else{
			if( low == high ) break;
			high = mid;
		}
	}

	if( low == size )
		return -1;
	else
		return low;

}

template <typename T>
int LMS (const T * data, int size, T* &S)
{
	if (size <= 0)
    return 0;
  
    S = new T[size];
    int S_Count = 1;
    S[0] = data[0];
 
    for (int i = 1; i < size; i++)
    {
         const T & e = data[i];
         int index = BSearch( S, S_Count, e);

		 if( index==-1 ) //说明e>Sm
 			S[S_Count++] = e;
         else if ( (index==S_Count-1)&&(S[S_Count-1]==e) ){ //e=Sm
            S[S_Count++] = e;
		 }
         else			//其他情况
             S[index] = e;
     }
 
     return S_Count;
 }

int main()
{
	int data[12] = {0,1,0,3,4,2,5,3,8,2,4,5};
	//int data[3] ={5,8,4};
	//HeapSort(data, 9);
	OutputArray(data, 12);
	cout <<endl;
	int *res;
	int count = LMS(data,12, res);
	cout <<count<<endl;
	OutputArray(res, count);
    return 0;
}


另:最长单调子序列及其计数问题

http://hi.baidu.com/vincentz/blog/item/6df5a3c2be3ffa180ef477e2.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值