Graham's Scan法求解凸包问题(C++)

原文来源于http://www.cnblogs.com/devymex/archive/2010/08/09/1795392.html有改动

概念

凸包(Convex Hull)是一个计算几何(图形学)中的概念。用不严谨的话来讲,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有点的。详细概念可查阅维基百科:http://en.wikipedia.org/wiki/Graham_scan

过程

1. 在所有点中选取y坐标最小的一点H,当作基点。如果存在多个点的y坐标都为最小值,则选取x坐标最小的一点。坐标相同的点应排除。然后按照其它各点p和基点构成的向量<H,p>与x轴的夹角进行排序,夹角由大至小进行顺时针扫描,反之则进行逆时针扫描。实现中无需求得夹角,只需根据向量的内积公式求出向量的模即可。以下图为例,基点为H,根据夹角由小至大排序后依次为H,K,C,D,L,F,G,E,I,B,A,J。下面进行逆时针扫描。

Figure1

2. 线段<H, K>一定在凸包上,接着加入C。假设线段<K, C>也在凸包上,因为就H,K,C三点而言,它们的凸包就是由此三点所组成。但是接下来加入D时会发现,线段<K, D>才会在凸包上,所以将线段<K, C>排除,C点不可能是凸包。

3. 即当加入一点时,必须考虑到前面的线段是否会出现在凸包上。从基点开始,凸包上每条相临的线段的旋转方向应该一致,并与扫描的方向相反。如果发现新加的点使得新线段与上线段的旋转方向发生变化,则可判定上一点必然不在凸包上。实现时可用向量叉积进行判断,设新加入的点为pn + 1,上一点为pn,再上一点为pn - 1。顺时针扫描时,如果向量<pn - 1, pn>与<pn, pn + 1>的叉积为正(逆时针扫描判断是否为负),则将上一点删除。删除过程需要回溯,将之前所有叉积符号相反的点都删除,然后将新点加入凸包。

 

Figure1

 

在上图中,加入K点时,由于线段<H,K>相对于<H,C>为顺时针旋转,所以C点不在凸包上,应该删除,保留K点。接着加入D点,由于线段<K, D>相对<H, K>为逆时针旋转,故D点保留。按照上述步骤进行扫描,直到点集中所有的点都遍例完成,即得到凸包。

复杂度

这个算法可以直接在原数据上进行运算,因此空间复杂度为O(1)。但如果将凸包的结果存储到另一数组中,则可能在代码级别进行优化。由于在扫描凸包前要进行排序,因此时间复杂度至少为快速排序的O(nlgn)。后面的扫描过程复杂度为O(n),因此整个算法的复杂度为O(nlgn)。

详细过程还可参考http://www.cnblogs.com/Booble/archive/2011/03/10/1980089.html,该博客介绍的很详细,并且也详细介绍了其他凸包算法。

还有http://www.geeksforgeeks.org/convex-hull-set-2-graham-scan/

代码


<pre name="code" class="cpp">#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <stdio.h>
#include <math.h>

#include <algorithm>
#include <vector>

using namespace cv;
using namespace std;

/**
凸包问题 -- Graham扫描法:
这个算法可以直接在原数据上进行运算,因此空间复杂度为O(1)。但如果将凸包的结果存储到另一数组中,
则可能在代码级别进行优化。由于在扫描凸包前要进行排序,因此时间复杂度至少为快速排序的O(nlgn)。
后面的扫描过程复杂度为O(n),因此整个算法的复杂度为O(nlgn)。
**/

//二维点(或向量)结构体定义
typedef vector<Point> PTARRAY;
//判断两个点(或向量)是否相等
bool operator==(const Point &pt1, const Point &pt2) {
	return (pt1.x == pt2.x && pt1.y == pt2.y);
}
// 比较两个向量pt1和pt2分别与x轴向量(1, 0)的夹角
bool CompareVector(const Point &pt1, const Point &pt2) {
	//求向量的模
	float m1 = sqrt((float)(pt1.x * pt1.x + pt1.y * pt1.y));
	float m2 = sqrt((float)(pt2.x * pt2.x + pt2.y * pt2.y));
	//两个向量分别与(1, 0)求内积
	float v1 = pt1.x / m1, v2 = pt2.x / m2;
	return ( v1 > v2 || (v1 == v2 && m1 < m2) );
}
//计算凸包
void CalcConvexHull(PTARRAY &vecSrc) {
	//点集中至少应有3个点,才能构成多边形
	if (vecSrc.size() < 3) { return; }
	//查找基点
	Point ptBase = vecSrc.front(); //将第1个点预设为最小点
	for (PTARRAY::iterator iter = vecSrc.begin() + 1; iter != vecSrc.end(); ++iter) {
		//如果当前点的y值小于最小点,或y值相等,x值较小
		if ( iter->y < ptBase.y || (iter->y == ptBase.y && iter->x > ptBase.x) ) {
			//将当前点作为最小点
			ptBase = *iter;
		}
	}
	//计算出各点与基点构成的向量
	for (PTARRAY::iterator iter = vecSrc.begin(); iter != vecSrc.end();) {
		//排除与基点相同的点,避免后面的排序计算中出现除0错误
		if (*iter == ptBase) {
			iter = vecSrc.erase(iter);
		}
		else {
			//方向由基点到目标点
			iter->x -= ptBase.x, iter->y -= ptBase.y;
			++iter;
		}
	}
	//按各向量与横坐标之间的夹角排序
	sort(vecSrc.begin(), vecSrc.end(), &CompareVector);
	//删除相同的向量
	vecSrc.erase(unique(vecSrc.begin(), vecSrc.end()), vecSrc.end());
	//计算得到首尾依次相联的向量
	for (PTARRAY::reverse_iterator riter = vecSrc.rbegin();
		riter != vecSrc.rend() - 1; ++riter) {
			PTARRAY::reverse_iterator riNext = riter + 1;
			//向量三角形计算公式
			riter->x -= riNext->x, riter->y -= riNext->y;
	}
	//依次删除不在凸包上的向量
	for (PTARRAY::iterator iter = vecSrc.begin() + 1; iter != vecSrc.end(); ++iter) {
		//回溯删除旋转方向相反的向量,使用外积判断旋转方向
		for (PTARRAY::iterator iLast = iter - 1; iLast != vecSrc.begin();) {
			int v1 = iter->x * iLast->y, v2 = iter->y * iLast->x;
			//如果叉积小于0,则无没有逆向旋转
			//如果叉积等于0,还需判断方向是否相逆
			if (v1 < v2 || (v1 == v2 && iter->x * iLast->x > 0 &&
				iter->y * iLast->y > 0)) { break; }
			//删除前一个向量后,需更新当前向量,与前面的向量首尾相连
			//向量三角形计算公式
			iter->x += iLast->x, iter->y += iLast->y;
			iLast = (iter = vecSrc.erase(iLast)) - 1;
		}
	}
	//将所有首尾相连的向量依次累加,换算成坐标
	vecSrc.front().x += ptBase.x, vecSrc.front().y += ptBase.y;
	for (PTARRAY::iterator iter = vecSrc.begin() + 1; iter != vecSrc.end(); ++iter) {
		iter->x += (iter - 1)->x, iter->y += (iter - 1)->y;
	}
	//添加基点,全部的凸包计算完成
	vecSrc.push_back(ptBase);
}


 
 
主程序:

RNG rng(12345678);

int main(void) {
	int nPtCnt = 100; //生成的随机点数
	PTARRAY vecSrc, vecCH;
	for (int i = 0; i < nPtCnt; ++i) {
		Point ptIn = Point( rand() % 400, rand() % 400 );
		vecSrc.push_back(ptIn);
		printf("%d,%d\n",ptIn.x,ptIn.y);
	}

	/// 绘出轮廓及其凸包
	Mat drawing = Mat::zeros( 500,500, CV_8UC3 );
	Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
	for( PTARRAY::iterator iter = vecSrc.begin(); iter != vecSrc.end(); ++iter )
	{
		circle(drawing,*iter,3,color,-1,1);
	}

	CalcConvexHull(vecSrc);
	printf("\nConvex Hull:\n");
	for (PTARRAY::iterator iter = vecSrc.begin(); iter != vecSrc.end(); ++iter) {
		printf("%d,%d\n",iter->x,iter->y);
	}

	color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
	for( PTARRAY::iterator iter = vecSrc.begin(); iter != vecSrc.end()-1; ++iter )
	{
		line( drawing,*iter,*(iter+1), color, 1, 8 );
	}
	line( drawing,vecSrc.at(vecSrc.size()-1),vecSrc.at(0),color,1,8 );
	/// 把结果显示在窗体
	namedWindow( "Hull demo", CV_WINDOW_AUTOSIZE );
	imshow( "Hull demo", drawing );
	waitKey(0);
	return 0;
}


运行结果:


  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是 Graham-Scan 算法C++ 实现,用于求解凸包问题: ```cpp #include <bits/stdc++.h> using namespace std; struct Point { int x, y; }; // 按照 x 坐标从小到大排序,若 x 坐标相等,则按照 y 坐标从小到大排序。 bool cmp(Point a, Point b) { if (a.x == b.x) return a.y < b.y; return a.x < b.x; } // 计算叉积。 int cross(Point a, Point b, Point c) { return (b.x - a.x) * (c.y - a.y) - (b.y - a.y) * (c.x - a.x); } // Graham-Scan 算法求解凸包。 vector<Point> grahamScan(vector<Point> &points) { int n = points.size(); if (n <= 1) return points; sort(points.begin(), points.end(), cmp); vector<Point> hull(2 * n); int k = 0; // 构建下凸壳。 for (int i = 0; i < n; ++i) { while (k >= 2 && cross(hull[k - 2], hull[k - 1], points[i]) <= 0) k--; hull[k++] = points[i]; } // 构建上凸壳。 for (int i = n - 2, t = k + 1; i >= 0; --i) { while (k >= t && cross(hull[k - 2], hull[k - 1], points[i]) <= 0) k--; hull[k++] = points[i]; } // 去除重复点。 hull.resize(k - 1); return hull; } int main() { // 测试数据。 vector<Point> points = {{0, 3}, {1, 1}, {2, 2}, {4, 4}, {0, 0}, {1, 2}, {3, 1}, {3, 3}}; vector<Point> hull = grahamScan(points); // 输出凸包的顶点。 for (int i = 0; i < hull.size(); ++i) { cout << "(" << hull[i].x << ", " << hull[i].y << ")" << endl; } return 0; } ``` 注意点: 1. 为了方便起见,我直接使用了 C++11 的新特性,使用 vector 存储点集,如果你使用的是较老的编译器,可以使用数组代替 vector。 2. 实现中为了方便起见,我使用了三个点 $A(a_x,a_y)$、$B(b_x,b_y)$、$C(c_x,c_y)$ 的叉积 $cross(A,B,C)$ 表示向量 $\vec{AB}$ 和 $\vec{AC}$ 的叉积。当叉积 $cross(A,B,C)>0$ 时,表示 $\vec{AB}$ 在 $\vec{AC}$ 的逆时针方向;当叉积 $cross(A,B,C)<0$ 时,表示 $\vec{AB}$ 在 $\vec{AC}$ 的顺时针方向;当叉积 $cross(A,B,C)=0$ 时,表示 $\vec{AB}$ 和 $\vec{AC}$ 共线。 3. 为了避免精度误差,最好使用整数类型存储坐标,如 int 类型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值