Logistic回归原理介绍

本文介绍了Logistic回归的基本原理,包括模型假设、判定边界和代价函数。Logistic回归通过Sigmoid函数将连续值转换为0或1的概率,以适应分类问题。模型假设部分讲解了如何根据特征向量和逻辑函数确定输出。判定边界通过θTx的值划分预测类别。代价函数部分阐述了不同于线性回归的非凸代价函数,并提供了梯度下降法的更新公式。
摘要由CSDN通过智能技术生成

模型假设

根据线性回归可以预测连续的值,对于分类问题,我们需要输出0或者1。所以,在分类模型中需要将连续值转换为离散值。我们可以预测:

  • hθ 大于等于0.5时,输出为y=1;

  • hθ 小于0.5时,输出为y=0。

Logistic回归模型的输出变量范围始终在0和1之间,Logistic回归模型的假设为:

hθ(x)=g(θTx)

其中:

  • x 代表特征向量
  • g 代表逻辑函数(Logistic Function),常用逻辑函数为S形函数(Sigmoid Function),函数公式为:

g(z)=11+ez

该函数的图像为:


所以,整个模型的假设为:

hθ(x)=11+eθTx

该假设函数 h

逻辑回归是一个经典的分类算法,它可以处理二元分类以及多元分类。逻辑回归原理是由线性回归模型演变而来的,因此含有“回归”二字,但它并不是一个回归算法,而是属于广义线性模型的一类。[2] 逻辑回归的基本原理可以概括为以下几个步骤: 1. 寻找预测函数:逻辑回归模型通过定义一个预测函数来预测观测样本的分类概率。常用的预测函数是sigmoid函数,也称为逻辑函数。这个函数将输入值映射到一个介于0和1之间的概率值。 2. 构造损失函数:为了使模型能够学习到最优的参数,需要定义一个损失函数来衡量预测值与真实值的差距。常用的损失函数是交叉熵损失函数,它可以度量模型的预测与实际分类之间的误差。 3. 损失函数的优化方法:为了最小化损失函数,常用的优化方法是梯度下降法。梯度下降法通过迭代更新模型参数,使得损失函数逐渐减小,从而达到寻找最优参数的目的。 逻辑回归的优点包括:实现简单,计算效率高,模型可解释性强,可以处理线性可分问题,并且可以通过调整阈值来控制分类的准确率与召回率的平衡。缺点包括:对于非线性可分问题表现较差,并且对异常值敏感。 逻辑回归与线性回归的区别在于目标变量的类型不同。线性回归用于预测连续型变量,而逻辑回归用于预测分类变量。此外,逻辑回归使用了sigmoid函数来模拟分类概率,而线性回归没有这个步骤。 以上是关于逻辑回归原理的一些简要介绍。如果需要更加详细的内容,可以参考引用的材料进行进一步学习。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值