吴恩达deeplearning之CNN—人脸识别与风格化转换(1)

本文介绍了人脸识别技术,包括one-shot learning的问题和解决方案——Siamese网络。通过Triplet损失函数训练网络以学习相似性函数,使同一个人的图像编码接近,不同人的图像编码远离。此外,还探讨了将人脸识别转化为二分类问题的方法,使用Siamese网络和逻辑回归单元进行面部验证。
摘要由CSDN通过智能技术生成

1.什么是人脸识别

  这部分演示了百度总部大楼的人脸识别系统,员工刷脸进出办公区,在这个演示中主要应用到了人脸识别技术和活体检测。
人脸识别的术语:
1)face verification:输入图像、名字ID判断输入图像是不是名字ID指定的用户
2)face recognition:有一个包含K个用户的数据库,拿到一幅图片,然后判断图片中的人是不是在数据库中,在输出指定用户name,不在就输出未识别。
  人脸识别要比人脸验证要困难的多,在人脸验证中准确率99%也许可以接受,但是放到包含100个用户的人脸识别数据集下,这个误差就会被放大,意味着1%的概率会出错。在后续我们首先构建人脸验证系统作为基本模块,如果准确率够高就可以把它用在识别系统上。人脸验证系统的难点在于解决one-shot learning(一次学习)问题。
这里写图片描述

2. one-shot learning

  one-shot的意思是你需要通过单单一张图片,就能去识别这个人,但是在深度学习中只有一个训练样本时,它的表现并不好,那么如何去解决这个问题呢?
  假如员工数据库有四个员工,当某个员工来的时候,你想通过人脸识别系统判断他是不是四个员工之一,系统需要做的是仅仅通过一张照片,来识别前面这个人。所以在one-shot学习问题中只能通过一个样本来进行学习以能够认出同一个人,大多数人脸识别系统都要解决这个问题,因为在你的数据库中每个雇员可能都只有一张照片。有一种办法是将人的照片输入卷积神经网络,使用softmax单元输出5个标签,分别对应四个员工和四个都不是,但是这样的效果并不好,假如有新的员工加入你的团队,你就需要重新训练你的神经网络,这个确实有些糟糕。
这里写图片描述
  要让人脸识别做到一次学习,为了能有更好的效果,你需要做的是学习similarity函数,详细的说就是下图中d表示的函数,d以两张图片作为输入,然后输出这两张图片的差异值,如果是同一个人的两张照片,希望输出一个很小的值,如果是两个差异很大的人的照片d输出一个很大的值。这样新加入一个员工只许将其的照片加入到数据库中即可,不需要重新训练模型。
这里写图片描述

3.Siamese网络

  Siamese网络就是实现上节函数d的训练,你经常会看到如下的网络结构,输入一个图像经过一系列的卷积、池化和全连接层最终得到一个特征向量,有时候会将其输入softmax单元来做分类,但是在这里我们不需要将其输入softmax单元。加入输出的特征向量大小是128维,将其命名为 f(x(1)) ,你可以将其看成输入图像的编码。

  建立一个人脸识别系统的方法是,如果你要比较两个图片的话,把两个图片喂入有相同网络结构和参数的神经网络,然后分别得到一个128维的向量,两个图像的编码分别命名为 f(x(1)) f(x(2)) x(1) x(2) 分别表示输入的两张图片,那么将两张图片的编码只差可以定义为:

d(x(1)
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值