基于CNN的人脸识别

前些日子读了一篇关于人脸识别的文章,age and gender classificiation using convolutional neural networks,这是一篇发表在cvpr2015的一篇文章,文章写得很好,条理清晰,逻辑性强,非常适合深度学习者学习,在这里特别做一个相关笔记。

当然,我也尝试着去实现这篇论文,文章中说到要用adience benchmark人脸数据库,我上网上找了找并没有找到这个数据库,于是乎我只能找其他的数据库来代替。开始的时候自己搜集数据库(汗!),搜集了大概1000张人脸,去训练神经网络时损失函数直接爆炸,完全不收敛,折腾了好久才想到可能是数据库样本太小的原因,后来在知乎大牛的指导下扩大自己的数据库,然后在caffe上运行试验,结果不但收敛了,准确率竟能达到约98%!!!

在实现的过程中需要注意的是数据库的大小一定不能太小,否则会不收敛,再者,要适当选择网络中的参数。我用cuda-convnet(也就是cifar10分类问题中比较流行的一个网络结构)来训练速度很快,最高准确率能达到96%,用论文中所述的网络结构时,速度要慢很多,但是最后准确率最高达到98.5%。

我只实现了人脸性别检测,人脸年龄检测问题可以说是换汤不换药,因为数据库准备需要大量的人力物力,所以就没有继续做下去!

卷积神经网络的结构如下图:


多的不说,先看看代码:

age_net:

name: "facenet"
layers {
  name: "data"
  type: DATA
  top: "data"
  top: "label"
  data_param {
    source: "data/mywork/face_train_lmdb"
    backend: LMDB
    batch_size: 50
  }
  transform_param {
    crop_size: 227
    mean_file: "data/mywork/face_mean.binaryproto"
    mirror: true
  }
  include: { phase: TRAIN }
}
layers {
  name: "data"
  type: DATA
  top: "data"
  top: "label"
  data_param {
    source:  "data/mywork/face_val_lmdb"
    backend: LMDB
    batch_size: 50
  }
  transform_param {
    crop_size: 227
    mean_file: "data/mywork/face_mean.binaryproto"
    mirror: false
  }
  include: { phase: TEST }
}
layers {
  name: "conv1"
  type: CONVOLUTION
  bottom: "data"
  top: "conv1"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 96
    kernel_size: 7
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "conv1"
  top: "conv1"
}
layers {
  name: "pool1"
  type: POOLING
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv2"
  type: CONVOLUTION
  bottom: "norm1"
  top: "conv2"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu2"
  type: RELU
  bottom: "conv2"
  top: "conv2"
}
layers {
  name: "pool2"
  type: POOLING
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm2"
  type: LRN
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv3"
  type: CONVOLUTION
  bottom: "norm2"
  top: "conv3"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers{
  name: "relu3" 
  type: RELU
  bottom: "conv3"
  top: "conv3"
}
layers {
  name: "pool5"
  type: POOLING
  bottom: "conv3"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "fc6"
  type: INNER_PRODUCT
  bottom: "pool5"
  top: "fc6"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 512
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu6"
  type: RELU
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "drop6"
  type: DROPOUT
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc7"
  type: INNER_PRODUCT
  bottom: "fc6"
  top: "fc7"
  blobs_lr: 1
  blobs_lr: 2
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 512
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layers {
  name: "relu7"
  type: RELU
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "drop7"
  type: DROPOUT
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc8"
  type: INNER_PRODUCT
  bottom: "fc7"
  top: "fc8"
  blobs_lr: 10
  blobs_lr: 20
  weight_decay: 1
  weight_decay: 0
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layers {
  name: "accuracy"
  type: ACCURACY
  bottom: "fc8"
  bottom: "label"
  top: "accuracy"
  include: { phase: TEST }
}
layers {
  name: "loss"
  type: SOFTMAX_LOSS
  bottom: "fc8"
  bottom: "label"
  top: "loss"
}
结构非常简单,经过大概4个小时的训练达到预期准确率。


基于CNN人脸识别算法的代码会涉及一系列步骤和库的应用。主要的步骤包括数据预处理、模型构建、训练和测试。 首先,代码会导入所需的库,如OpenCV(用于图像读取和处理)、TensorFlow(用于构建和训练CNN模型)等。 其次,代码会进行数据预处理。这可能包括将人脸图像转为灰度图像、调整图像大小,以及进行数据增强(如翻转、剪裁、旋转等),以增加训练样本的多样性。 然后,代码会定义CNN模型的架构。这通常包括多个卷积层、池化层、全连接层和分类器层。每个层都有特定的参数(如过滤器大小、步幅、填充等),需要根据任务的要求进行调整。 接下来,代码会进行模型训练。这包括将数据集分为训练集和验证集,以便监控模型在不同数据上的表现。代码会利用训练集的数据反向传播,更新模型的权重和偏置,以减少预测结果与标签之间的差距。同时,可以根据需要设置训练参数,如学习率、批量大小、迭代次数等。 最后,代码会进行模型测试。这一步可以通过将测试集的图像输入到训练好的模型中,然后根据预测结果与真实标签进行比较,计算准确率、精确率、召回率等指标。也可以将模型应用于新图像,进行实时人脸识别的测试。 总之,基于CNN人脸识别算法的代码实现了数据预处理、模型构建、训练和测试等一系列步骤,通过经验调节参数和模型架构,可以获得准确率较高的人脸识别结果。
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值