最大熵学习笔记(二)最大熵原理

   
       生活中我们经常听到人们说“不要把鸡蛋放到一个篮子里”,这样可以降低风险。深究一下,这是为什么呢?其实,这里边包含了所谓的最大熵原理(The Maximum Entropy Principle)。本文为一则读书笔记,将对最大熵原理以及由此导出的最大熵模型进行介绍,重点给出其中所涉及数学公式的理解和详细推导。


相关链接


最大熵学习笔记(零)目录和引言
最大熵学习笔记(一)预备知识
最大熵学习笔记(二)最大熵原理
最大熵学习笔记(三)最大熵模型
最大熵学习笔记(四)模型求解
最大熵学习笔记(五)最优化算法
最大熵学习笔记(六)优缺点分析




作者: peghoty 

出处: http://blog.csdn.net/itplus/article/details/26550127

欢迎转载/分享, 但请务必声明文章出处.


在Python中使用OpenCV进行最大熵值化的示例代码如下: ```python import numpy as np import cv2 as cv import sys image = cv.imread('F:/material/images/2022/2022-06/img_300_320.jpg') if image is None: print('Error: Could not load image') sys.exit() img_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) cv.imshow('img_gray', img_gray) blockSize = 5 constValue = 0 maxVal = 255 img_B_MEAN = cv.adaptiveThreshold(img_gray, maxVal, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, blockSize, constValue) img_B_GAUSSIAN = cv.adaptiveThreshold(img_gray, maxVal, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, blockSize, constValue) cv.imshow('img_B_MEAN', img_B_MEAN) cv.imshow('img_B_GAUSSIAN', img_B_GAUSSIAN) cv.waitKey(0) cv.destroyAllWindows() ``` 这段代码使用OpenCV的`adaptiveThreshold()`函数进行最大熵值化。其中,`blockSize`表示局部区域的大小,`constValue`表示从平均值或加权平均值中减去的常数值,`maxVal`表示最大值。通过调整这些参数,可以得到不同的值化结果。在示例代码中,分别使用了`ADAPTIVE_THRESH_MEAN_C`和`ADAPTIVE_THRESH_GAUSSIAN_C`两种算法进行值化,并显示了结果图像。 希望对你有帮助! #### 引用[.reference_title] - *1* [学习笔记6(opencv+python阈值分割(最大熵))](https://blog.csdn.net/weixin_44911091/article/details/107973515)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [与值化阈值处理相关的OpenCV函数、方法汇总,便于对比和拿来使用](https://blog.csdn.net/wenhao_ir/article/details/125592598)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值