目标识别】深度学习进行目标识别的资源列表

转载 2016年04月19日 11:17:24

 (出处: thinkface论坛) http://www.thinkface.cn/thread-4434-1-1.html 

目标识别】深度学习进行目标识别的资源列表:O网页链接 包括RNN、MultiBox、SPP-Net、DeepID-Net、Fast R-CNN、DeepBox、MR-CNN、Faster R-CNN、YOLO、DenseBox、SSD、Inside-Outside Net、G-CNN等。
Papers

Deep Neural Networks for Object Detection

OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks
[td]
method
ILSVRC 2013 mAP
OverFeat
24.3%
R-CNN
Rich feature hierarchies for accurate object detection and semantic segmentation(R-CNN)
[td]
method
VOC 2007 mAP
VOC 2010 mAP
VOC 2012 mAP
ILSVRC 2013 mAP
R-CNN,AlexNet
54.2%
50.2%
49.6%

R-CNN,bbox reg,AlexNet
58.5%
53.7%
53.3%
31.4%
R-CNN,bbox reg,ZFNet
59.2%

 
R-CNN,VGG-Net
62.2%

 
R-CNN,bbox reg,VGG-Net
66.0%

 
MultiBox
Scalable Object Detection using Deep Neural Networks (MultiBox)
SPP-Net
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
[td]
method
VOC 2007 mAP
ILSVRC 2013 mAP
SPP_net(ZF-5),1-model
54.2%
31.84%
SPP_net(ZF-5),2-model
60.9%

SPP_net(ZF-5),6-model
35.11%
Learning Rich Features from RGB-D Images for Object Detection and Segmentation
Scalable, High-Quality Object Detection
DeepID-Net
DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection
[td]
method
VOC 2007 mAP
ILSVRC 2013 mAP
DeepID-Net
64.1%
50.3%
Object Detection Networks on Convolutional Feature Maps
[td]
method
Trained on
mAP
NoC
07+12
68.8%
NoC,bb
07+12
71.6%
NoC,+EB
07+12
71.8%
NoC,+EB,bb
07+12
73.3%
Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction
[td]
Model
BBoxReg?
VOC 2007 mAP(IoU>0.5)
R-CNN(AlexNet)
No
54.2%
R-CNN(VGG)
No
60.6%
+StructObj
No
61.2%
+StructObj-FT
No
62.3%
+FGS
No
64.8%
+StructObj+FGS
No
65.9%
+StructObj-FT+FGS
No
66.5%
[td]
Model
BBoxReg?
VOC 2007 mAP(IoU>0.5)
R-CNN(AlexNet)
Yes
58.5%
R-CNN(VGG)
Yes
65.4%
+StructObj
Yes
66.6%
+StructObj-FT
Yes
66.9%
+FGS
Yes
67.2%
+StructObj+FGS
Yes
68.5%
+StructObj-FT+FGS
Yes
68.4%
Fast R-CNN
Fast R-CNN
[td]
method
data
VOC 2007 mAP
FRCN,VGG16
07
66.9%
FRCN,VGG16
07+12
70.0%
[td]
method
data
VOC 2010 mAP
FRCN,VGG16
12
66.1%
FRCN,VGG16
07++12
68.8%
[td]
method
data
VOC 2012 mAP
FRCN,VGG16
12
65.7%
FRCN,VGG16
07++12
68.4%
DeepBox
DeepBox: Learning Objectness with Convolutional Networks
MR-CNN
Object detection via a multi-region & semantic segmentation-aware CNN model (MR-CNN)
[td]
Model
Trained on
VOC 2007 mAP
VGG-net
07+12
78.2%
VGG-net
07
74.9%
[td]
Model
Trained on
VOC 2012 mAP
VGG-net
07+12
73.9%
VGG-net
12
70.7%
Faster R-CNN
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(NIPS 2015)
[td]

training data
test data
mAP
time/img
Faster RCNN, VGG-16
07
VOC 2007 test
69.9%
198ms
Faster RCNN, VGG-16
07+12
VOC 2007 test
73.2%
198ms
Faster RCNN, VGG-16
12
VOC 2007 test
67.0%
198ms
Faster RCNN, VGG-16
07++12
VOC 2007 test
70.4%
198ms
YOLO
You Only Look Once: Unified, Real-Time Object Detection(YOLO)
R-CNN minus R
DenseBox
DenseBox: Unifying Landmark Localization with End to End Object Detection
SSD
SSD: Single Shot MultiBox Detector
Inside-Outside Net
Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks
Detection results on VOC 2007 test:
[td]
Method
R
S
W
D
Train
mAP
FRCN

 
 
07+12
70.0
RPN

 
 
07+12
73.2
MR-CNN

 

07+12
78.2
ION

 
 
07+12
74.6
ION

 
07+12
75.6
ION

 
07+12+S
76.5
ION

07+12+S
78.5
ION
07+12+S
79.2
Detection results on VOC 2012 test:
[td]
Method
R
S
W
D
Train
mAP
FRCN

 
 
07++12
68.4
RPN

 
 
07++12
70.4
FRCN+YOLO

 
 
07++12
70.4
HyperNet

 
 
07++12
71.4
MR-CNN

 

07+12
73.9
ION
07+12+S
76.4
G-CNN
G-CNN: an Iterative Grid Based Object Detector
Learning Deep Features for Discriminative Localization
Factors in Finetuning Deep Model for object detection
We don’t need no bounding-boxes: Training object class detectors using only human verification
A MultiPath Network for Object Detection
Beyond Bounding Boxes: Precise Localization of Objects in Images (PhD Thesis)
T-CNN: Tubelets with Convolutional Neural Networks for Object Detection from Videos
Training Region-based Object Detectors with Online Hard Example Mining
Specific Object Deteciton
End-to-end people detection in crowded scenes
Tutorials
Convolutional Feature Maps: Elements of efficient (and accurate) CNN-based object detection
Codes
TensorBox: a simple framework for training neural networks to detect objects in images
Object detection in torch: Implementation of some object detection frameworks in torch
Blogs
Convolutional Neural Networks for Object Detection

系统学习深度学习(三十五)--DenseBox

 转自:http://blog.csdn.net/cv_family_z/article/details/50172741 DenseBox: Unifying Landmark Locali...
  • App_12062011
  • App_12062011
  • 2017年09月12日 09:40
  • 4726

目标检测相关文章及源码

【目标识别】深度学习进行目标识别的资源列表:O网页链接 包括RNN、MultiBox、SPP-Net、DeepID-Net、Fast R-CNN、DeepBox、MR-CNN、Faster R-CNN...
  • langb2014
  • langb2014
  • 2016年08月27日 10:22
  • 2955

长文干货!走近人脸检测:从VJ到深度学习(上)(下)

长文干货!走近人脸检测:从VJ到深度学习(下) http://mp.weixin.qq.com/s?__biz=MzI1NTE4NTUwOQ==&mid=2650324508&idx=1&sn=b1...
  • zkl99999
  • zkl99999
  • 2016年04月21日 12:13
  • 3539

论文笔记(1)DenseBox: Unifying Landmark Localization with End to End Object Detection

本文的贡献有一下几点: 1,实现了end-to-end的学习,同时完成了对bounding box和物体类别的预测; 2,在多任务学习中融入定位信息,提高了检测的准确率。我们先来看看他和其他几篇代...
  • dp_BUPT
  • dp_BUPT
  • 2015年09月30日 16:34
  • 7372

目标检测最新方法介绍

https://handong1587.github.io/deep_learning/2015/10/09/nlp.html Jump to... Leaderboard...
  • zhang11wu4
  • zhang11wu4
  • 2017年01月01日 19:11
  • 12076

人脸检测——UnitBox

本次介绍一篇来自旷视科技的人脸检测文章:《2016 ACM MM UnitBox: An Advanced Object Detection Network》.代码应该是不会放出来了,但好在实现比较简...
  • shuzfan
  • shuzfan
  • 2016年09月22日 17:55
  • 4626

DenseBox: Unifying Landmark Localization with End to End Object Detection

百度深度学习研究院 的目标检测工作 类似 Faster R-CNN输入多尺度图像,经过CNN处理,输出目标框Model Design 模型是从 19层的VGG模型演变来的。Multi-Leve...
  • cv_family_z
  • cv_family_z
  • 2015年12月04日 11:34
  • 5361

【目标识别】深度学习进行目标识别的资源列表

【目标识别】深度学习进行目标识别的资源列表:O网页链接 包括RNN、MultiBox、SPP-Net、DeepID-Net、Fast R-CNN、DeepBox、MR-CNN、Faster R-CNN...
  • u014696921
  • u014696921
  • 2017年04月06日 08:31
  • 1086

目标检测小结

转自 http://blog.sina.com.cn/s/blog_679e13290101btr7.html 运动检测作为许多计算机视觉应用中的预处理环节,在诸如视频监控、智能空间、视频搜索等...
  • wangweiboss
  • wangweiboss
  • 2015年04月29日 15:29
  • 1968

车辆目标检测

  • 2017年09月15日 10:38
  • 2.9MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:目标识别】深度学习进行目标识别的资源列表
举报原因:
原因补充:

(最多只允许输入30个字)