- 博客(17)
- 收藏
- 关注
原创 win11+cuda11.0.3+vs2017+opencv4.5.4+opencv_contrib-4.5.4详细教程
vs2017(企业版或专业版)、opencv4.5.4和opencv_contrib-4.5.4源码、cmake14.X、python3.8。
2023-07-15 10:11:42 512 1
原创 c++入门错误集合(vs2022)
严重性 代码 说明 项目 文件 行 禁止显示状态错误(活动) E0413 不存在从 “std::_Vector_iterator” 到 “Letter *” 的适当转换函数 快速敲字母 F:\code\51zxw\C++\快速敲字母\game2.cpp 82。
2023-05-06 18:24:48 748
原创 Coordinate Attention (2021)
最近关于移动网络设计的研究已经证明了通道注意力(例如,挤压和激励注意力)对于提升模型性能的显着有效性,但它们通常忽略了位置信息,这对于生成 空间选择性特征图 很重要。在本文中,我们通过将位置信息嵌入到通道注意力中,提出了一种新的移动网络注意力机制,我们称之为"与通过 2D 全局池化将特征张量转换为单个特征向量的通道注意力不同,坐标注意力将通道注意力分解为两个一维特征编码过程,分别沿两个空间方向聚合特征。通过这种方式,可以沿一个空间方向捕获远程依赖性,同时可以沿另一个空间方向保留精确的位置信息。
2023-03-31 16:27:56 428
原创 NWD(2022)
检测微小物体是一个非常具有挑战性的问题,因为微小物体仅包含几个像素大小。我们证明,由于缺乏外观信息,最先进的检测器无法在微小物体上产生令人满意的结果**。我们的主要观察结果是,基于联合交集 (IoU) 的指标(例如 IoU 本身及其扩展)对微小物体的位置偏差非常敏感,并且在用于基于锚点的检测器中时会大大降低检测性能。为了缓解这种情况,我们提出了一种使用 Wasserstein 距离进行微小物体检测的新评估指标**。
2023-03-29 16:56:45 5574 1
原创 ShuffleNet V2 (2018)读书笔记
使用 FLOPs 作为计算复杂性的唯一指标是不够的。间接(FLOPs)和直接(速度)指标之间的差异可归因于两个主要原因。首先,FLOPs 没有考虑几个对速度有相当大影响的重要因素。其中一个因素是内存访问成本 (MAC)。其次**,具有相同 FLOP 的操作可能具有不同的运行时间**,具体取决于平台。我们建议应该考虑两个原则来进行有效的网络架构设计。首先,应该使用直接指标(例如,速度)而不是间接指标(例如,FLOPs)。其次,应在目标平台上评估此类指标。
2023-03-21 14:56:22 270
原创 GhostNetV2(2022)(全文翻译)
轻量级卷积神经网络 (CNN) 专为推理速度更快的移动设备上的应用而设计。卷积运算只能捕获窗口区域的局部信息,这阻碍了性能的进一步提高。将self-attention引入卷积可以很好地捕捉全局信息,但会在很大程度上阻碍实际速度。在本文中,我们提出了一种硬件友好的注意力机制(称为 DFC 注意力),然后提出了一种用于移动应用程序的新 GhostNetV2 架构。所提出的DFC 注意力是基于全连接层构建的,它不仅可以在普通硬件上快速执行,还可以捕获远程像素之间的依赖关系。
2023-03-18 20:16:18 2029
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人