扩展欧几里得算法

简单介绍

扩展欧几里得算法是用于求解类似于这样的式子的,据说这个式子叫做贝祖等式。

ax+by=gcd(a,b)

其中,a,b,x,y 都为整数。不过一般为了方便,都会将它化成这样

ax+by=1

其中,a,b 互质(其实就是最上面那个式子中a,b都除以一个 gcd(a,b) 就行了)

欧几里得算法(辗转相除法)

  • 要讲扩展欧几里得算法,那么就先讲讲欧几里得算法,之后再将它扩展出来。
  • 所谓欧几里得算法,就是用来求两个整数的最大公因数的方法,相信大家都会,不过这里还是给出简单的证明吧。
  • 首先先证明辗转相减法的正确性,即

gcd(a,b)=gcd(b,ab)

  • 不妨设 a=pm, b=pn, gcd(m,n)=1
  • 那么就有 ab=(mn)p ,接下来只需证明 gcd(mn,n)=1 就行了
  • ,  mn=qk1, n=qk2, (q1), m=(mn)+n=q(k1+k2),gcd(n,m)  q, , gcd(m,n)=1
  • 所以,辗转相减法是正确的
  • 之后,辗转相除法就很简单了,它的内容是这样的

gcd(a,b)=gcd(b,a%b)

其实就相当于做多次辗转相减法嘛~

扩展欧几里得算法

大致思路

扩欧的思路大概就是对a,b做一次辗转相除,得到一堆式子,再利用这些式子后往前推出二元一次不定方程的一个特解。

方法&证明

对于要求解的式子,为了方便,不妨令 G=gcd(a,b)

ax+by=G

我们对 a,b 做一次辗转相除法,可以得到多个这样的式子:
{ax1+by1bx0+(a%b)y0=G=G

由于是从下到上,即 x0 y0 是已知的,那么经过 剧烈的运算,可以解出 x1  x2
{x1y1==y0x0(a/b)y0

注意,这里的 a 和 b 可能和原式子中的 a、b 不同,它们是辗转相除中的 a, b。
这样,当b==0时,a肯定是 G 了,此时返回x1=1,x2=0,其余情况就用上面解出的公式求,回到最开始的原式时,得到的x1、x2就是所求的特解了。

关于通解

对于一次不定方程

ax+by=gcd(a,b)

只要我们求出一组特解 (x,y) ,那么 我们可以得出一个通解
{xy=x+tb=yta

其中, t 是一个整数。

证明

  • 首先,对于所有 (x,y) 符合上面的要求,那么它们肯定是一组解

    a(x+tb)+b(yta)=ax+by+atbbta=ax+by

  • 然后再证明一下数对 (x,y) 为此不定方程的解当且仅当符合上面的要求。用反证法可以很容易地证明出来。

程序

#include <cstdio>
int a,b,x,y;

void gcd(int &x1,int &y1,int aa,int bb){    //为了不和主程序中的a和b混淆,就用aa和bb 
    if (bb==0){x1=1; y1=0; return;} //关键的一步,相当于辗转相除法求出最大公约数的那个式子,其中aa就是最大公约数了 
    int x0,y0;
    gcd(x0,y0,bb,aa%bb);        //求出x0和y0 
    x1=y0; y1=x0-aa/bb*y0;      //根据上面的公式求出x1和y1 
    if (x1<0) x1+=bb,y1-=aa;    //为了防止范围溢出,利用通解性质适当调整一下
    if (x1>bb) x1-=bb,y1+=aa;   //同上
}

int main(){
    scanf("%d%d",&a,&b);    //题目中的a和b
    gcd(x,y,a,b);
    printf("%d %d",x,y);    //一组特解x1,y1就出来了
}

例子模拟

下面对于

19x+15y=1
来模拟一次程序实现的过程
(我是递归到bb==0时才开始按回溯的顺序记录的,你们可以自己做一次辗转相除,看看除下来对应的aa、bb是不是相同)

aabb x1 y1 x0 y0
1010
310110
431-101
154-141-1
19154-5-14

所以,最终得出的特解就是

{xy==54

验算一下, 419+(5)15=1 ,确实没错!实际上,在上面每一步中,你算一算
x1aa+y1bb
的值,它们都是等于1(即gcd(a,b))的。
除此之外每一行的 x0  y0 其实就是上一行的 x1  y1 原因就是我们就是这样定义的,不懂的话再看看之前的说明,领悟一下

应用

扩欧应用广泛,下面举一些例子

  • 求解同余方程

    axgcd(a,n)     (mod n)

    下面是更常见的一个形式,不过要求 a 和 n 互质
    ax1     (mod n)

    可以将其看成 ax+ny=gcd(a,n) ,就和上面讲的东西一样了

  • 求乘法逆元
    http://blog.csdn.net/jackypigpig/article/details/56846964

  • 求解同余方程组

    xxx...xa1modb1a2modb2a3modb3anmodbn

值得注意

  • 我们可以发现,当 a 和 b 是斐波那契数列里相邻的两个元素时,时间复杂度是相对更高的。
  • 在实际程序实现时,可能会出现溢出的现象,所以可以在适当的地方“模”一下 b。

小小的说明

对于本篇博文中的一些为了书写方便而不规范的符号说明一下

  • 有些地方取模运算(mod)用了%代替,因为 mod... 太长了。
  • 文中的/符号实际上是“整除”的意思,例如在“方法&证明”中,a/b实际上是 ab ,由于它实在太高了,所以就用矮一点的/代替了。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值