数学知识:扩展欧几里得算法

本文详细介绍了欧几里得算法,包括定义、证明以及如何利用扩展欧几里得算法求解最大公约数和线性同余方程。通过AcWing上的实例,展示了算法的应用,并提供了相关问题的代码实现。
摘要由CSDN通过智能技术生成

本文档基于 AcWing 制作

什么是欧几里得算法?

定义

欧几里得算法 ( g c d ) (gcd) (gcd),又叫辗转相除法,是指用于计算两个非负整数a,b的最大公约数。

证明: g c d ( a , b ) = g c d ( b , a   m o d   b ) gcd(a,b)=gcd(b,a \ mod \ b) gcd(a,b)=gcd(b,a mod b)

证明:
a ≤ b , a = b ∗ r + c , d = ( a , b ) a \leq b,a=b * r+c,d=(a,b) ab,a=br+c,d=(a,b),则 c = a % b = a − b ∗ r c=a \% b=a-b*r c=a%b=abr
(1). g c d ( a , b ) < = g c d ( b , a   m o d   b ) gcd(a,b)<=gcd(b,a \ mod \ b) gcd(a,b)<=gcd(b,a mod b)
d ∣ a d|a da, d ∣ b d|b db, 则 d ∣ c d|c dc, 即 a , b a,b a,b的公约数同时也是 a , c a,c a,c的公约数,
a , b a,b a,b的最大公约数也是 a , c a,c a,c的公约数, g c d ( a , b ) ≤ g c d ( a , a   m o d   b ) gcd(a,b) \leq gcd(a,a \ mod \ b) gcd(a,b)gcd(a,a mod b)
(2). g c d ( b , a ) ≤ g c d ( b , a   m o d   b ) gcd(b,a) \leq gcd(b,a \ mod \ b) gcd(b,a)gcd(b,a mod b)
d ∣ b d|b db, d ∣ c d|c dc,则 d ∣ a d|a da ,即 b , c b,c b,c的公约数同时也是 a , b a,b a,b的公约数, b , c b,c b,c的最大公约数同时也是 a , b a,b a,b的公约数, g c d ( b , a   m o d   b ) ≤ g c d ( a , b ) gcd(b,a \ mod \ b) \leq gcd(a,b) gcd(b,a mod b)gcd(a,b)
(3).综上可得,gcd(a,b)=gcd(a,a mod b),证毕

代码----欧几里得算法

int gcd(int a,int b)
{
   
    return b?gcd(b,a%b):a;
}

实例:

AcWing 872.最大公约数

原题链接:AcWing 872.最大公约数

题目描述

给定 n n n对正整数 a i a_i ai, b i b_i bi,请你求出每对数的最大公约数。

输出格式

第一行包含整数 n n n
接下来 n n n行,每行包含一个整数对 a i , b i a_i,b_i ai,bi

输出格式

输出共 n n n行,每行输出一个整数对的最大公约数。

数据范围

1 1 1 ≤ \leq n n n ≤ \leq 1 0 5 10^5 105
1 1 1 ≤ \leq a i , b i ≤ 2 × 1 0 9 a_i, b_i \leq 2 \times 10^9 ai,bi2×109

输入样例:

2
3 6
4 6

输出样例:

3
2

代码
  • 时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)
#include<bits/stdc++.h>
#define int long long
using namespace std;

int gcd(int a,int b)
{
   
    return b?gcd(b,a%b):a;
}

signed main()
{
   
    ios::sync_with_stdio(false);
    cin.tie(0);cout.tie(0);
    int T;
    cin>>T;
    while(T--)
    {
   
        int a,b;
        cin>>a>>b;
        cout<<gcd(a,b)<<'\n';
    }
    return 0;
}

扩展欧几里得算法

算法基础——裴蜀定理

定义:

定义:若 a , b a,b a,b是整数,且 g c d ( a , b ) = d gcd(a,b)=d gcd(a,b)=d,那么对于任意整数 x , y x,y x,y a x + b y ax+by ax

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值