/*
*算法引入:
*树上两点的最近公共祖先;
*对于有根树的两个结点u,v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u,v的祖先且x的深度尽可能大;
*对于x来说,从u到v的路径一定经过点x;
*
*算法思想:
*Tarjan_LCA离线算法;
*Tarjan算法基于dfs的框架,对于新搜到的一个结点,首先创建由这个结点构成的集合,再对当前结点的每个子树进行搜索;
*每搜索完一棵子树,则可确定子树内的LCA询问都已解决,其他的LCA询问的结果必然在这个子树之外;
*这时把子树所形成的集合与当前结点的集合合并,并将当前结点设为这个集合的祖先;
*之后继续搜索下一棵子树,直到当前结点的所有子树搜完;
*
*这时把当前结点也设为已被检查过的,同时可以处理有关当前结点的LCA询问;
*如果有一个从当前结点到结点v的询问,且v已经被检查过;
*则由于进行的是dfs,当前结点与v的最近公共祖先一定还没有被检查;
*而这个最近公共祖先的包含v的子树一定已经搜索过了,那么这个最近公共祖先一定是v所在集合的祖先;
*
*算法步骤:
*对于每一个结点:
*(1)建立以u为代表元素的集合;
*(2)遍历与u相连的结点v,如果没有被访问过,对于v使用Tarjan_LCA算法,结束后将v的集合并入u的集合;
*(3)对于与u有关的询问(u,v),如果v被访问过,则结果就是v所在集合的代表元素;
*
*算法示例:
*HDU2586(How far away?)
*
*题目大意:
*求树上任两点间的距离;
*
*算法思想:
*先dfs一遍,求出到根节点的dis;
*对于某个询问,求u和v的lca,然后res[i]=d[u]+d[v]-2*d[lca(u,v)];
*
**/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int N=40004;
const int M=202;
typedef long long LL;
int p[N];
int head[N*2];
int qhead[N];//询问
bool visit[N];
LL d[N];
LL res[M];
struct node
{
int to;
int w;
int next;
int lca;
};
node edge[N*2];
node qedge[M];//询问边
int n,m;
int cnt1,cnt2;
inline void Addedge(int u,int v,int w)
{
edge[cnt1].w=w;
edge[cnt1].to=v;
edge[cnt1].next=head[u];
head[u]=cnt1;
cnt1++;
edge[cnt1].w=w;
edge[cnt1].to=u;
edge[cnt1].next=head[v];
head[v]=cnt1;
cnt1++;
}
inline void Addqedge(int u,int v)
{
qedge[cnt2].to=v;
qedge[cnt2].next=qhead[u];
qhead[u]=cnt2;
cnt2++;
/*qedge[cnt2].to=u;
qedge[cnt2].next=qhead[v];
qhead[v]=cnt2;
cnt2++;*/
}
void dfs(int u,int f,LL w)
{
d[u]=w;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
int v=edge[i].to;
if(v==f)
continue;
dfs(v,u,w+edge[i].w);
}
}
int Find(int x)
{
if(p[x]!=x)
p[x]=Find(p[x]);
return p[x];
}
void Tarjan_LCA(int u)//离线LCA算法
{
p[u]=u;
visit[u]=1;
for(int i=head[u]; i!=-1; i=edge[i].next)
{
if(!visit[edge[i].to])
{
Tarjan_LCA(edge[i].to);
p[edge[i].to]=u;
}
}
for(int i=qhead[u]; i!=-1; i=qedge[i].next)
{
if(visit[qedge[i].to])
{
qedge[i].lca=Find(qedge[i].to);
//printf("%d和%d的最近公共祖先为: %d\n",u,qedge[i].to,qedge[i].lca);
res[i]=d[u]+d[qedge[i].to]-2*d[qedge[i].lca];
// qedge[i+1].lca=qedge[i].lca;
}
}
}
void Solve()
{
for(int i=0; i<=n; i++)
p[i]=i;
memset(head,-1,sizeof(head));
memset(qhead,-1,sizeof(qhead));
memset(visit,0,sizeof(visit));
cnt1=cnt2=0;
int u,v,w;
for(int i=1; i<n; i++)
{
scanf("%d%d%d",&u,&v,&w);
Addedge(u,v,w);
}
for(int i=0; i<m; i++)
{
scanf("%d%d",&u,&v);
Addqedge(u,v);
}
dfs(1,0,0);
Tarjan_LCA(1);
}
int main()
{
//freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%d%d",&n,&m);
Solve();
for(int i=0; i<m; i++)
printf("%lld\n",res[i]);
}
return 0;
}
树上两点的最近公共祖先-Tarjan_LCA离线算法
最新推荐文章于 2025-02-15 15:00:03 发布