去年下半年看了相关目标检测的论文,一些传统的算法,一些CVPR,TPAMI,ECCV,ICCV,,NIPS,比较前沿的进展,主要都是基于深度学习卷积神经网络方面的,包括RCNN,SPP-NET,Fast-RCNN,Faster-RCNN,以及YOLO,SSD,然后明天准备正式开始搞学术了,争取早点把论文发出来。
趁着放假回家的时间,做点前期准备工作,深度学习方面的框架有caffe,torch,mxnet,kerse,还有最近比较大热的TensorFlow,感觉tf会持续popular,所以准备搭建一个玩玩,但是相关比较新的目标检测框架都是首先基于caffe开发的,caffe对于图像方面的库比较多,稳定,所以搭建一个caffe也是必不可少,好像tf也是可以调用caffe框架模型的(没用过)。
装双系统之step one:http://blog.csdn.net/jasonzhangoo/article/details/54865974
装显卡驱动之step two(很多同学都是因为这步而放弃深度学习的):http://blog.csdn.net/jasonzhangoo/article/details/54866049