九度OJ 1109 连通图

116 篇文章 2 订阅
66 篇文章 1 订阅
题目描述:

    给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。

输入:

    每组数据的第一行是两个整数 n 和 m(0<=n<=1000)。n 表示图的顶点数目,m 表示图中边的数目。如果 n 为 0 表示输入结束。随后有 m 行数据,每行有两个值 x 和 y(0<x, y <=n),表示顶点 x 和 y 相连,顶点的编号从 1 开始计算。输入不保证这些边是否重复。

输出:

    对于每组输入数据,如果所有顶点都是连通的,输出"YES",否则输出"NO"。

样例输入:
4 3
1 2
2 3
3 2
3 2
1 2
2 3
0 0
样例输出:
NO
YES

本题要求的是 一幅图的连通分量的个数,如果个数为1,输出YES,否则输出NO

思路:只要进行图的遍历,从一点开始,一次深度或者广度遍历之后连通分量个数为1。如果还有没有被访问的点,那么说明存在孤立的点,那么整幅图就不连通,输出NO即可。

深度遍历的实现是用递归来实现;广度遍历的实现是用队列来实现。

#include <iostream>
#include <cstring>
using namespace std;

#define MAXN 1010

int map[MAXN][MAXN];
bool visit[MAXN];
int n,m;

void DFS(int i){
	visit[i] = 1;
	for(int j=1;j<=n;j++){
		if(!visit[j] && map[i][j] && j!=i){
			DFS(j);
		}
			
	}
}

int main(){
	int a,b;
	while(cin>>n>>m){
		if(n == 0)
			break;
		memset(map,0,sizeof(map));
		memset(visit,0,sizeof(visit));
		for(int i=0;i<m;i++){
			cin>>a>>b;
			map[a][b] = map[b][a] = 1;
		}
		int count = 0;
		for(int i=1;i<=n;i++){
			if(!visit[i]){
				count ++;
				DFS(i);
			}
			if(count == 2)
				break;	
		}
		if(count == 1)
			cout<<"YES"<<endl;
		else 
			cout<<"NO"<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值