求N的阶乘约数的个数

这篇博客介绍了如何计算正整数n的阶乘约数的个数。通过基本定理,当n可分解为素数的幂次形式时,约数个数为各素数幂次加1的乘积。对于阶乘问题,首先找出20以内的素数,计算每个素数在20!中出现的次数,如2的阶为18,3的阶为8等。通过递归函数`cal(int n, int p)`计算质数p在n!中出现的次数。最后,应用公式计算C(n,k)约数的个数,用于解决TOJ 2308题目。" 105455522,9250003,解决munmap_chunk(): invalid pointer内存错误,"['内存管理', 'C++编程', '多线程', '调试技巧']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先说基本定理:

若正整数n可分解为p1^a1*p1^a2*...*pk^ak

其中pi为两两不同的素数,ai为对应指数,则n的约数个数为(1+a1)*(1+a2)*....*(1+ak)
        如180=2*2*3*3*5=2^2*3^2*5
        180的约数个数为(1+2)*(1+2)*(1+1)=18个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值