keras如何保存模型

使用model.save(filepath)将Keras模型和权重保存在一个HDF5文件中,该文件将包含:

模型的结构,以便重构该模型
模型的权重
训练配置(损失函数,优化器等)
优化器的状态,以便于从上次训练中断的地方开始

使用keras.models.load_model(filepath)来重新实例化你的模型,如果文件中存储了训练配置的话,该函数还会同时完成模型的编译


只保存模型结构,而不包含其权重或配置信息


#保存成json格式的文件
# save as JSON
 json_string = model.to_json()  
open('my_model_architecture.json','w').write(json_string)   
from keras.models import model_from_json
model = model_from_json(open('my_model_architecture.json').read())  

#保存成yaml文件
# save as YAML  
yaml_string = model.to_yaml()  
open('my_model_architectrue.yaml','w').write(yaml_string)
from keras.models import model_from_yaml
model = model_from_yaml(open('my_model_architecture.yaml').read())

#这项操作将把模型序列化为json或yaml文件,这些文件对人而言也是友好的,如果需要的话你甚至可以手动打开这些文件并进行编辑。当然,你也可以从保存好的json文件或yaml文件中载入模型:

# model reconstruction from JSON:  
from keras.modelsimport model_from_json  
model = model_from_json(json_string)  

# model reconstruction from YAML  
model =model_from_yaml(yaml_string)  

需要保存模型的权重


import keras.models import load_model
model.save_weights('my_model_weights.h5') 
#需要在代码中初始化一个完全相同的模型 
model.load_weights('my_model_weights.h5')
#需要加载权重到不同的网络结构(有些层一样)中,例如fine-tune或transfer-learning,可以通过层名字来加载模型  
model.load_weights('my_model_weights.h5', by_name=True)
 open('my_model_architecture.json','w').write(json_string)  
model.save_weights('my_model_weights.h5')  
model = model_from_json(open('my_model_architecture.json').read())  
model.load_weights('my_model_weights.h5')

实时保存模型结构、训练出来的权重、及优化器状态并调用


keras 的callback参数可以帮助我们实现在训练过程中的适当时机被调用。实现实时保存训练模型以及训练参数

keras.callbacks.ModelCheckpoint(
    filepath, 
    monitor='val_loss', 
    verbose=0, 
    save_best_only=False, 
    save_weights_only=False, 
    mode='auto', 
    period=1
)

1. filename:字符串,保存模型的路径
### Keras 保存模型时如何设置存储路径及目录结构 在 Keras 中,可以通过 `model.save()` 方法将整个模型(包括架构和权重)保存到指定的 HDF5 文件中。此方法允许开发者通过传递文件路径参数来定义模型保存的具体位置。 当调用 `model.save(filepath)` 时,`filepath` 参数决定了模型保存的目标路径以及文件名[^1]。如果目标路径不存在,则会自动创建相应的目录;但如果需要更复杂的目录管理逻辑,建议提前手动确认并创建所需的目录结构。 以下是实现自定义存储路径的一个简单例子: ```python import os from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense # 创建简单的神经网络模型 model = Sequential([ Dense(32, activation='relu', input_shape=(784,)), Dense(10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 定义保存路径 save_dir = "/path/to/your/directory" if not os.path.exists(save_dir): # 如果目录不存在则创建它 os.makedirs(save_dir) # 构建完整的文件路径 file_path = os.path.join(save_dir, "my_model.h5") # 保存模型至指定路径 model.save(file_path) print(f"Model saved to {file_path}") ``` 上述代码片段展示了如何先验证目标目录是否存在,并在必要时创建该目录,随后构建完整路径并将模型保存其中。 对于 TensorFlow 的 SavedModel 格式,也可以利用类似的机制设定保存路径。SavedModel 是一种灵活且可移植的方式用于序列化 TensorFlow 模型[^2]。下面是一个使用 SavedModel 格式的示例: ```python import tensorflow as tf # 假设已经有一个训练好的模型 'model' save_dir_savedmodel = "/another/path/to/savedmodel" # 使用 TensorFlow 提供的方法保存为 SavedModel 格式 tf.saved_model.save(model, save_dir_savedmodel) print(f"Model saved in SavedModel format at {save_dir_savedmodel}") ``` 值得注意的是,在某些情况下可能还需要额外配置环境变量或者工具链支持,比如为了可视化模型图而安装 Graphviz 并将其 bin 路径加入系统的 PATH 变量中[^3]。不过这一步通常只影响模型架构绘图功能而不直接影响模型本身的保存过程。 最后提醒一点,加载已保存的 H5 或者 SavedModel 类型模型同样依赖于正确的路径指针。例如重新加载一个之前保存过的 H5 格式模型可以这样操作: ```python from tensorflow.keras.models import load_model loaded_model = load_model('/path/to/your/directory/my_model.h5') loss, accuracy = loaded_model.evaluate(x_test, y_test, verbose=0) print(f'Test Loss: {loss}, Test Accuracy: {accuracy}') ``` 以上就是关于如何在 Keras/TensorFlow 中明确指定模型保存路径及其基本流程介绍[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值