明日
文章平均质量分 84
帅气的弟八哥
敏于行而慎于言,讷于言而敏于行
展开
-
NIPS 2016上22篇论文的实现汇集
日前,LightOn CEO 兼联合创始人 Igor Carron 在其博客上放出了其收集到的 NIPS 2016 论文的实现(一共 22 个)。他写道:「在 Reddit 上,peterkuharvarduk 决定编译所有来自 NIPS 2016 的可用实现,我很高兴他使用了『实现( implementation)』这个词,因为这让我可以快速搜索到这些项目。」除了 peterkuharvardu转载 2017-01-05 08:13:08 · 3285 阅读 · 0 评论 -
当你在应用机器学习时你应该想什么
如今, 机器学习变得十分诱人, 它已在网页搜索, 商品推荐, 垃圾邮件检测, 语音识别, 图像识别, 自然语言处理等诸多领域发挥重要作用. 和以往我们显式地通过编程告诉计算机如何进行计算不同, 机器学习是一种数据驱动方法(data-driven approach). 然而, 有时候机器学习像是一种”魔术”, 即使是给定相同的数据, 一位机器学习领域专家和一位新手训练得到的结果可能相去甚远. 本文简要转载 2017-08-10 11:05:23 · 693 阅读 · 0 评论 -
深度学习(Deep Learning)读书思考三:正则化
概述正则化是机器学习中非常重要并且非常有效的减少泛华误差的技术,特别是在深度学习模型中,由于其模型参数非常多非常容易产生过拟合。因此研究者也提出很多有效的技术防止过拟合,比较常用的技术包括: 参数添加约束,例如L1、L2范数等 训练集合扩充,例如添加噪声、数据变换等 Dropout该文主要介绍深度学习中比较常见几类正则化方法以及常用参数选择,并试图解释其原理。正则化技术参数惩转载 2017-08-10 15:33:41 · 818 阅读 · 0 评论 -
标签传播算法(Label Propagation)及Python实现
半监督学习(Semi-supervised learning)发挥作用的场合是:你的数据有一些有label,一些没有。而且一般是绝大部分都没有,只有少许几个有label。半监督学习算法会充分的利用unlabeled数据来捕捉我们整个数据的潜在分布。它基于三大假设: 1)Smoothness平滑假设:相似的数据具有相同的label。 2)Cluster聚类假设:处于同一个聚类下的数据具有相同l转载 2017-06-01 15:45:42 · 2854 阅读 · 0 评论 -
基于CNN的性别、年龄识别及Demo实现
一、相关理论 本篇博文主要讲解2015年一篇paper《Age and Gender Classification using Convolutional Neural Networks》paper的创新点在哪里。难道是因为利用CNN做年龄和性别分类的paper很少吗?网上搜索了一下,性别预测,以前很多都是用SVM算法,用CNN搞性别分类就只搜索到这一篇文章。 性别分类自然而然是二分类问题,然而转载 2017-03-09 07:08:13 · 5120 阅读 · 3 评论 -
《神经网络:回到未来》(Neural Nets Back to the Future)-ICML 2016
《神经网络:回到未来》(Neural Nets Back to the Future)官方主页:Neural Nets Back to the Future @ ICML 16 June 23rd 2016 at Crowne Plaza in NYCWorkshop Schedule08:20 am Welcome and Introduction08:30 am Larry Ja原创 2017-02-26 19:18:06 · 502 阅读 · 0 评论 -
关于机器学习的领悟与反思(张志华北大数学系教授)
张志华教授:机器学习——统计与计算之恋 COS访谈第十九期:张志华教授 张志华老师教学之感悟 ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆张志华 北京大学数学学院教授,北京大数据研究院高级研究员。曾在浙江大学和上海交通大学计算机系任教。主要从事机器学习与应用统计等领域的教学与科研工作。 张志华老师主页转载 2017-01-13 10:14:01 · 10530 阅读 · 0 评论 -
2015伦敦深度学习峰会笔记(转载)
摘要:在伦敦举行的第三届深度学习峰会由RE.WORK主办,汇集了从工业领域到学术领域不同背景的专业人士,本文是该峰会第一天的笔记。包括Koray Kavukcuoglu、Sander Dieleman等知名深度学习专家分享了自己的经验。上周,我有机会参加在伦敦举行的第三届深度学习峰会,上两届分别在旧金山和波士顿举行。深度学习峰会由 RE.WORK主办,汇集了从工业领域到学术领域转载 2016-01-14 11:13:40 · 1236 阅读 · 0 评论 -
NIPS 2016 Highlighted Papers
今天看到NIPS官网开放了部分录用文章的Spotlight Videos,迫不及待撸了一遍,特别将一些有趣、有料的highlight出来分享给大家。文章链接均为油管视频,戳前请翻墙(排名不分先后,但根据自己的兴趣在每篇文章后用“★”标记出了推荐指数,五星为最高)。Fast and Provably Good Seedings for k-Means传统k转载 2016-12-05 17:07:11 · 981 阅读 · 0 评论 -
CVPR2016代码合集
DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low Bitwidth Gradients:https://github.com/ppwwyyxx/tensorpack/tree/master/examples/DoReFa-NetCode for Stacked attention netwo转载 2016-12-02 09:51:43 · 2289 阅读 · 0 评论 -
训练的神经网络不工作?一文带你跨过这37个坑
近日,Slav Ivanov 在 Medium 上发表了一篇题为《37 Reasons why your Neural Network is not working》的文章,从四个方面(数据集、数据归一化/增强、实现、训练),对自己长久以来的神经网络调试经验做了 37 条总结,并穿插了不少出色的个人想法和思考,希望能帮助你跨过神经网络训练中的 37 个大坑。神经网络已经持续训练了 12 个小时。它看转载 2017-08-15 15:28:50 · 3623 阅读 · 0 评论