我想说的:由于是在树上进行的dp,所以在网上搜树型DP的时候,就搜到了,结果感觉题目很水,不过为了保证周题数量,就做了吧。不过不知道为什么,我的时间会那么多,感觉自己的思路很清晰,也没有多余的地方啊!
题意:一个人要举办一个party,邀请的一些人中,有的人是有的人的顶头上司,为了使每个人都可以玩的尽兴,所以不想让他们见面,所以现在要从这些人中选择一部分,每个人都有各自的快乐指数,所以要求最终选择的人加起来的快乐指数最多。
解题:根据题意,我们建图的话,结果会是很多颗树(每个节点的父节点就是其对应的顶头上司)。对于每个人,都有两中状态:选择(yes),不选(no)。对于以P为父节点,如果选择了P,那么它的所有孩子就只能是不选(no);如果不选择P,那么它的所有孩子可以选择 ,也不可选择,那么就是找这两中情况的最大的了。
所以状态转移方程就是:peo[i].no+=sum(max(child.no,child.s))(child是i的所有孩子);peo[i].yes+=sum(chile.no).
个人代码:
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
#define N 6010
struct ss{
int no,yes;
}peo[N];
vector <int > tree[N];
int num,ans;
bool de[N];
char c[10],ret[10]={"0 0"};
void init()
{
int l,k;
memset(de,true,sizeof(de));
ans=0;
for(int i=1;i<=num;i++)
{
scanf("%d",&peo[i].yes);
peo[i].no=0;
tree[i].clear();
}
for(int i=1;i<num;i++)
{
scanf("%d%d",&l,&k);
tree[k].push_back(l);
de[l]=false;
}
getchar();
}
void dfs(int key)
{
int i,v,length=tree[key].size();
for(i=0;i<length;i++)
{
v=tree[key][i];
dfs(v);
peo[key].no+=max(peo[v].no,peo[v].yes);
peo[key].yes+=peo[v].no;
}
}
int main()
{
// freopen("/home/acm/JPY/input.txt","r",stdin);
while(1)
{
gets(c);
if(!strcmp(c,ret))
return 0;
sscanf(c,"%d",&num);
init();
for(int i=1;i<=num;i++)
{
if(de[i])
{
dfs(i);
ans+=max(peo[i].no,peo[i].yes);
}
}
cout<<ans<<endl;
}
return 0;
}