codeforces round 360 div2 Remainders Game gcd+模线性方程组

/* 
    题目描述:给出n个数c1 , c2 , ... , cn ,以及一个正整数k(所有数都是<=1e6的正整数)问是否对于任意的x,只要知道了
          x%c1 , x%c2 , ... ,x%cn的值,就一定能确定x%k的值
                        
    思路:首先根据模线性方程组的求解过程可知,若已知x%c1 , x%c2 , ... ,x%cn的值,便可知x % M的值,其中M是c1,c2,...
       cn的最小公倍数,当且仅当k是M的因子时,对于任意的x可以确定x%k的值,所以问题就成了M是否含有因子k
                
       判断的方法可以是记录已经可以消掉的k中的因子的乘积d,每次取k与c[i]之间的最大公约数GCD,那么GCD/gcd(GCD,d)便是
       c[i]可以贡献出的消掉的k中的因子,最终判断消掉的因子乘积d是否等于k就可以
*/
#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#include<sstream>
#define LL __int64
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-6;
const int maxn = 1e6 + 5;
inline LL gcd(LL a , LL b)
{
    return b == 0 ? a : gcd(b , a % b);
}
LL c[maxn];
int main()
{
    int n ;
    LL k;
    scanf("%d%I64d",&n , &k);
    for(int i = 1 ; i<= n ; i++){
        scanf("%I64d",&c[i]);
    }
    LL d = 1LL , GCD;
    for(int i = 1 ; i<= n ; i++){
        GCD = gcd(c[i] , k);
        GCD = GCD / gcd(GCD , d);
        d *= GCD;
    }
    if(d == k)
        puts("Yes");
    else
        puts("No");
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值