nefu115 斐波那契的整除 斐波纳契+打表

/*
    题目描述: 斐波纳契数列的第n(1<n<1e9)项能否被3整除 , 能否被4整除 , 能否被12整除
    
    方法:打表可发现斐波纳契数列的循环的特点:
              对于第n项来说,如果n是4的倍数,则f[n]能整除3 ; 如果n是6的倍数,则f[n]能整除4 ; 如果n是4和6的公倍数,
              则f[n]能整除12
*/
#pragma warning(disable:4786)
#pragma comment(linker, "/STACK:102400000,102400000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cmath>
#include<string>
#define LL long long
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define mem(a,x) memset(a,x,sizeof(a))
#define lson l,m,x<<1
#define rson m+1,r,x<<1|1
using namespace std;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double PI = acos(-1.0);
const double eps=1e-8;
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF){
        if(n%4==0 && n%6==0){
            printf("YES\n");    continue;
        }
        if(n%4==0){
            printf("3\n");      continue;
        }
        if(n%3==0){
            printf("4\n");      continue;
        }
        printf("NO\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值