Ubuntu16.04lts使用Anaconda安装tensorflow并配置GPU

  在安装tensorflow之前,首先列示一下我的配置:Ubuntu16.04lts系统,Geforce840M显卡,Cuda8.0,Cudnn v5.1,Anaconda python2.7环境。

1. 安装Cuda

  首先下载Cuda8.0,然后进入下载目录,执行下列命令,即可安装Cuda

sudo dpkg -i cuda-repo-ubuntu1604-8-0-local_8.0.44-1_amd64.deb
sudo apt-get update
sudo apt-get install cuda

安装完成后,配置环境变量,在home下的.bashrc中加入

export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

export CUDA_HOME=/usr/local/cuda:$CUDA_HOME

2. 安装Cudnn

  Cuda8.0支持Cudnn v5.0和v5.1,但是在安装tensorflow之后测试其示例代码mnist时,提示该代码基于Cudnn v5.1生成,因此我又改成了v5.1。
  下载Cudnn v5.1,进入下载目录,执行下列命令:

tar xvzf cudnn-8.0-linux-x64-v5.1.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuda/lib64/libcudnn.so* /usr/local/cuda/lib64
sudo chmod a+r /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn.so*​

上面第2、3行就是把Cudnn的头文件和库文件复制到Cuda路径下的include和lib目录。

3.使用Anaconda安装tensorflow

  首先新建一个conda环境,命名为tensorflow

conda create -n tensorflow python=2.7

然后激活该环境并在该环境下安装tensorflow

source activate tensorflow

由于使用conda安装的tensorflow只有CPU版本,所以我们使用pip安装,

export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/gpu/tensorflow-0.11.0rc1-cp27-none-linux_x86_64.whl
pip install –ignore-installed –upgrade $TF_BINARY_URL

如此,便完成GPU版本的tensorflow安装。使用完毕后,需要关闭tensorflow环境

source deactivate

可以简单测试一下tensorflow是否安装成功

$ python
...
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session() #在该步会显示电脑的显卡信息
>>> print(sess.run(hello))
Hello, TensorFlow!
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> print(sess.run(a + b))
42
>>>

tensorflow自带几个示例程序,详细位置如下:

…/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/models

Anaconda2是Anaconda的安装位置,第一个tensorflow为conda创建的名字为tensorflow的环境,第二个tensorflow即安装的tensorflow包。进入image下的mnist目录,然后运行python convolutional.py就是对mnist的训练过程。

### Tesla P100 安装指南 对于希望了解如何安装配备 Tesla P100 的系统的用户来说,可以从 Ubuntu 16.04 开始配置环境,在此环境中加入 CUDA 和 cuDNN 支持,最终完成 TensorFlow 及 Jupyter Notebook 的部署[^1]。 #### 准备工作 确保已经获取到所有必要的硬件组件确认这些设备能够正常运作。首次组装计算机时建议观看一些在线视频教程来熟悉整个过程[^2]。 #### 软件环境搭建 - **操作系统**: 推荐使用稳定版本的操作系统如Ubuntu 16.04 LTS。 - **驱动程序安装**: 更新至最新的 NVIDIA 显卡驱动以支持 Tesla P100 GPU 功能特性。 - **CUDA Toolkit**: 下载对应版本的 CUDA 工具包,这一步骤至关重要因为它提供了GPU加速所需的核心库文件和支持工具集。 - **cuDNN 库集成**: 获取适用于所选框架(例如TensorFlow)的特定版本的 cuDNN 库,按照官方说明将其路径添加到环境变量中以便于后续应用调用。 ```bash export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/lib64 ``` - **Anaconda 发行版 Python**: 使用 Anaconda 来管理不同项目所需的Python依赖关系是非常方便的选择;通过它创建新的虚拟环境来进行实验性开发也是不错的方法之一。 - **Jupyter Notebook 安装**: 当解决了网络连接速度慢的问题之后就可以顺利地下载安装 Jupyter Notebook ,从而允许在一个交互式的Web界面内编写和运行代码片段了。 #### 测试与验证 最后要做的就是测试新设置好的平台能否正常使用。可以通过简单的例子比如训练一个小规模的数据模型来看看一切是否都按预期那样运转良好。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值