Kmeans聚类及图像分割

  Kmeans是最简单的聚类算法之一,应用十分广泛,Kmeans以距离作为相似性的评价指标,其基本思想是按照距离将样本聚成不同的簇,两个点的距离越近,其相似度就越大,以得到紧凑且独立的簇作为聚类目标。本文参考PRML一书,详细讲解Kmeans聚类的原理以及图像分割应用。

1. 基本原理

  给定 D 维欧几里得空间的一组数据{x1,...,xN},我们的任务是将该组数据聚成 K 个簇(聚类和分类的区别在于分类是有监督的,聚类是无监督的,根据任务设定聚类依据,此处假设聚类个数K是已知的)。不考虑问题背景,单纯从欧几里得空间的角度讲,我们应当将距离较近的点聚为一个簇,不同簇的点之间的距离较远。Kmeans聚类方法就是寻找K个聚类中心 μk(k=1,...,K) ,将所有的数据分配到距离最近的聚类中心,使得每个点与其相应的聚类中心距离的平方和最小。
  我们引入二值变量 rnk{0,1} 来表示数据点 xn 对于聚类 k 的归属(其中n=1,...,N, k=1,...,K ),如果数据点 xn 属于第 k 聚类,则rnk=1,否则为 0 。如此,我们便可定义如下损失函数:

J=n=1Nk=1Krnkxnμk2(1)
该问题的目标就是寻找使得损失函数 J 最小的所有数据点的归属值{rnk}和聚类中心 {μk} 。Kmeans算法提供了一种迭代求解方法,在每次迭代中交替优化 rnk μk
  第一步,随机选择聚类中心 μk 的初始值,求取使损失函数 J 最小的数据点的归属值rnk。由 (1) 式容易看出,给定 xn μk 的值,损失函数 J rnk的线性函数,而且,由于 xn 之间是相互独立的,所以对于每一个 n ,我们只需将该点分配到距离最近的聚类中心,即
rnk={10if k=argminjxnμj2otherwise(2)
  第二步,固定已求得的 rnk ,再求取使损失函数 J 最小的聚类中心μk。给定 rnk 的值,损失函数 J μk的二次函数,令 J μk的导数为 0 ,我们有
n=1Nrnk(xnμk)=0(3)
那么 μk 的取值为

μk=nrnkxnnrnk(4)
对于第 k 个聚类,rnk取1的个数就是属于该聚类的点的个数,因此, μk 等于属于该聚类的点均值。
 如此迭代该两阶段优化问题直至收敛,Kmeans的实现过程大致表示如下:
(1) 随机选取K个初始聚类中心;
(2) 计算每个样本到各聚类中心的距离,将每个样本归到其距离最近的聚类中心;
(3) 对每个簇,以所有样本的均值作为该簇新的聚类中心;
(4) 重复第(2)~(3)步,直到聚类中心不再变化或达到设定的迭代次数。
  图1为Kmeans算法的实现过程图示,以二聚类为例,首先随机选择两个聚类中心,根据距离将所有的点聚为两个簇(如图1(2)),然后将两个簇以其均值作为新的聚类中心重新聚类。如此迭代,由图可知,经过4次循环,聚类中心不再变化,便完成对该组数据的聚类。由图1(1)可知,初始聚类中心选在了一个簇中,事实上,如果初始聚类中心选择合适,Kmeans聚类收敛速度会非常快,极端情况是,聚类中心恰巧选在了每个簇的中心,无需迭代该聚类问题就已经完成。

图1 Kmeans聚类过程图示

2. 图像分割应用

  彩色图像中的每一个像素是三维空间中的一个点,三维对应红、绿、蓝三原色的强度,基于Kmeans聚类算法的图像分割以图像的像素为数据点,按照指定的簇数进行聚类,然后将每个像素点以其对应的聚类中心替代,重构该图像。如图2所示,不同的聚类簇数呈现不同的色彩特征。


图2 Kmeans用于图像分割

3. Kmeans聚类的缺点

  1) 聚类簇数K没有明确的选取准则,但是在实际应用中K一般不会设置很大,可以通过枚举法,比如令K从2到10。其实很多经典方法的参数都没有明确的选取准则,如PCA的主元个数,可以通过多次实验或者采取一些小技巧来选择,一般都会达到很好的效果。
  2) 从Kmeans算法框架可以看出,该算法的每一次迭代都要遍历所有样本,计算每个样本到所有聚类中心的距离,因此当样本规模非常大时,算法的时间开销是非常大的。
  3) Kmeans算法是基于距离的划分方法,只适用于分布为凸形的数据集,不适合聚类非凸形状的类簇,如图3所示。


图3 Kmeans聚类的缺点

运用K-means算法进行图像分割, K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具有较大的 公式 公式 影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离将每个对象重新赋给最近的簇。当考察完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来。如果在一次迭代前后,J的值没有发生变化,说明算法已经收敛。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的各个类的质心 4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束 具体如下: 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i; (3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数; (4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。 折叠工作原理 K-MEANS算法的工作原理及流程 K-MEANS算法 输入:聚类个数k,以及包含 n个数据对象的数据库。 输出:满足方差最小标准的k个聚类
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值