Problem Description
中位数定义为所有值从小到大排序后排在正中间的那个数,如果值有偶数个,通常取最中间的两个数值的平均数作为中位数。
现在有 n 个数,每个数都是独一无二的,求出每个数在多少个包含其的区间中是中位数。
现在有 n 个数,每个数都是独一无二的,求出每个数在多少个包含其的区间中是中位数。
Input
多组测试数据
第一行一个数 n(n≤8000)
第二行 n 个数, 0≤ 每个数 ≤109 ,
第一行一个数 n(n≤8000)
第二行 n 个数, 0≤ 每个数 ≤109 ,
Output
N
个数,依次表示第
i
个数在多少包含其的区间中是中位数。
Sample Input
5 1 2 3 4 5
Sample Output
1 2 3 2 1
O(n^2)统计,对于每个数字,对于比它大的记一个1,小的记一个-1,然后只要考虑左右相加为0的有多少即可。
这题的一血原来是我拿的,小小激动了一下。
#include<map> #include<set> #include<queue> #include<stack> #include<cmath> #include<cstdio> #include<bitset> #include<string> #include<vector> #include<cstring> #include<iostream> #include<algorithm> #include<functional> using namespace std; typedef long long LL; const int low(int x) { return x&-x; } const int INF = 0x7FFFFFFF; const int mod = 1e9 + 7; const int maxn = 1e5 + 10; int n, a[maxn]; int cnt[maxn]; int main() { while (~scanf("%d",&n)) { for (int i=1;i<=n;i++) scanf("%d",&a[i]); for (int i=1;i<=n;i++) { for (int j=1;j<=2*n;j++) cnt[j]=0; int x=0; cnt[n]++; for (int j=1;i-j>0;j++) { if (a[i-j]<a[i]) x--; else x++; cnt[n+x]++; } x=0; int y=cnt[n]; for (int j=1;i+j<=n;j++) { if (a[i+j]<a[i]) x--; else x++; y+=cnt[n-x]; } printf("%d%s",y,i==n?"\n":" "); } } return 0; }