logistic算法解析

本文详细解析了《机器学习实战》中的逻辑斯谛回归算法,重点介绍了权重更新公式及其背后的数学原理。通过具体的Python实现代码,帮助读者深入理解算法的工作机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);">对于《机器学习实战》中逻辑斯谛回归算法,其中有一行不好理解:</span>

weights = weights + alpha * dataMatrix.transpose() * error

原理推导如下:




附:logistic算法

def sigmoid(inX):
	return 1.0/(1+exp(-inX))
	
def gradAscent(dataMatIn, classLabels):
	dataMatrix = mat(dataMatIn)
	labelMat = mat(classLabels).transpose()
	m, n = shape(dataMatrix)
	alpha = 0.001
	maxCycles = 500
	weights = ones((n, 1))
	for k in range(maxCycles):
		h = sigmoid(dataMatrix*weights)
		error = (labelMat - h)
		weights = weights + alpha * dataMatrix.transpose() * error
	return weights





评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值