- 博客(36)
- 资源 (3)
- 收藏
- 关注
原创 聚合算法总结
聚合算法是将简单算法混合或组合起来的算法。它既具有限制欠拟合的能力,又具有限制过拟合的能力,合理使用将能获得很好的效果。本文是对聚合算法的总结。
2015-09-10 20:42:50 4373
原创 Interpretable Convolutional Neural Networks笔记
通过mask使得网络部分激活mask是一个连续的区域,可以使用以一点为中心的L1或L2区域最小化的目标是X(feature map)和T(template)的互信息,计算条件概率p(X|T)使用softmax转换的X和T的相似度(X和T的dot)forward过程选择template覆盖区域中x和最大的template,而且要求template的label和数据label一致
2017-10-20 22:31:52 3648 3
原创 A Latent Semantic Model with Convolutional-Pooling Structure for Information Retrieval笔记
用于搜索的CLSM模型
2017-03-16 16:06:19 2167
原创 Deep Visual-Semantic Alignments for Generating Image Descriptions摘要
Deep Visual-Semantic Alignments for Generating Image Descriptions(李飞飞等)摘要,生成图片描述的算法
2017-03-06 00:26:45 1533
原创 Learning Deep Structured Semantic Models for Web Search using Clickthrough Data笔记
用于搜索的DSSM模型
2017-02-26 23:59:49 2810
原创 限制波尔兹曼机
1.玻尔兹曼分布玻尔兹曼分布常用在热学中,对于一个有大量粒子的系统,如果系统处于或接近处于平衡,粒子的能量、速度、速率等就服从玻尔兹曼分布。如果系统中有N个粒子,一共有j个能态,每个能态的简并度是gj,则体系的总状态数为:用极大似然估计,需要找到Nj的分布使得W最大,由于有总粒子数和总能量数为定值的限制,这是一个约束最优化问题。使用拉格朗日乘子法:使用斯特灵公式,然
2016-06-10 18:58:50 727 1
原创 属性特征对机器学习模型的影响
属性特征(幅度差异很大、大部分是对分类无贡献的噪声、具有相关性的属性、组合属性才能很好的分类数据)对各种机器学习模型的影响
2015-11-22 18:01:16 920
原创 logistic算法解析
对于《机器学习实战》中逻辑斯谛回归算法,其中有一行不好理解:weights = weights + alpha * dataMatrix.transpose() * error原理推导如下:附:logistic算法def sigmoid(inX): return 1.0/(1+exp(-inX)) def gradAscent(dataMatIn, c
2015-07-21 23:10:40 2856 3
原创 机器学习基础知识
第一章 统计学习方法概率1.1 统计学习1. 统计学习的特点2. 统计学习的对象对象是数据,关于数据的基本假设是同类数据具有一定的统计规律性3. 统计学习的目的对数据进行预测与分析,通过构建概率统计模型实现4. 统计学习的方法监督学习非监督学习 半监督学习 强化学习模型、策略、算法步骤:(1)得到有限训练数据集合(2)确定包含所有可能的模型的假设空间
2015-06-08 22:48:32 846
原创 数据分片与路由
概念与目的数据分片(Shard/Partition)的目的是方便横向扩展。数据分片后,需要靠路由(Routing)来找到记录的位置。模型数据分片是一个二级映射关系。第一级是key -> partition,从数据记录映射到数据分片,这是一个多对一关系。第二级是partition -> machine,从数据分片映射到物理机器,这也是一个多对一的关系。常见的映射关系有hash
2014-09-27 17:11:28 1449
转载 OSI七层模型
1.物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后在转化为1、0,也就是我们常说的数模转换与模数转换)。这一层的数据叫做比特。2.数据链路层:定义了如何让格式化数据以进行传输,以及如何让控制对物理介质的访问。这一层通常还提供错误检测和纠正,以确保数据的可靠传输。3.网络层
2013-10-16 14:35:51 363
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人