LeetCode Gas Station 两个特性,两种方法完美解答-更新证明方法

Gas Station

There are N gas stations along a circular route, where the amount of gas at station i is gas[i].

You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.

Return the starting gas station's index if you can travel around the circuit once, otherwise return -1.

Note:
The solution is guaranteed to be unique.

这道题也挺麻烦的。乍看不难,用最简单的算法就是一个一个点地计算,计算到没油了,证明这点不能作为出发点。移动到下一个点作为出发点。这样的话思路还是挺简单的,不过这样写不accepted的,因为编译超时。

我觉得做这道题的关键是要可以总结出来这道题目的属性,注意Note这个地方,其属性主要有两个:

1 如果总的gas - cost小于零的话,那么没有解返回-1

2 如果前面所有的gas - cost加起来小于零,那么前面所有的点都不能作为出发点。

2013-12-1 update:

原创: 靖心http://write.blog.csdn.net/postedit/14106137

第一个属性的正确性很好理解。那么为什么第二个属性成立呢?

首先我们是从i =0个gas station计算起的,设开始剩油量为left=0,如果这个station的油是可以到达下一个station的,那么left=gas-cost为正数,

到了下一个station就有两种情况:

1 如果i=1个station的gas-cost也为正,那么前面的left加上当前station的剩油量也为正。

2 如果i=1个station的gas-cost为负,那么前面的left加上当前的station的剩油量也有两种情况:

一) left为正,那么可以继续到下一个station,重复前面计算i=2,i=3...,直到发生第二)种情况

 二)如果left为负,那么就不能到下一个station了,这个时候如果i=k(i<k<n),这个时候是否需要从第i=1个station开始重新计算呢?不需要,因为第k个station之前的所有left都为正的,到了第k个station才变成负。

证明:

left(i)>0, 如果left(i+1)<0,从i+1个station重新开始测试是没有必要的;如果left(i+2) > 0呢? 那么left(i) + left(i+1)>0; left(i) + left(i+1) +left(i+2) > left(i+2)那么从i+2个station开始也是没有必要的,以此类推……left(i) + ...+ left(k-2)>0, 那么left(i)+...+left(k-2) > left(k-1), 那么就是没有必要从第k-1个节点重新开始计算了,现在到了第k个station的剩油量left变为负,也不能作为出发点,那么直接到k+1个计算就可以了。这就可以得出属性2了。

 

以前没重视数学的证明定理的方法,要去证明一个定理是很困难的。但是原来证明的方法主要不是用来证明定理的,而是用来发现规则和特征的。

 

主要利用属性2可以写两个程序:

程序一:记录最后一个加起来小于零的索引,然后返回这个索引+1就是答案了。

程序二:跳跃式,跃过不能作为出发点的点,加速循环

不总结出这些特性是难做出来的。两种方法的运行时间都差不多。

程序一:

class Solution {
public:
	int canCompleteCircuit(vector<int> &gas, vector<int> &cost) 
	{
		int sum = 0;
		int total = 0;
		int j = -1;
		for(int i = 0; i < gas.size() ; ++i)
		{
			sum += gas[i]-cost[i];
			total += gas[i]-cost[i];
			if(sum < 0)
			{
				j=i; sum = 0; 
			}
		}
		if(total<0) return -1;
		else return j+1;
	}
};

程序二:

class Solution {
public:
	int canCompleteCircuit(vector<int> &gas, vector<int> &cost) 
	{
		int n = gas.size();
		int j = 0;
		for(int i=0; i<n;)
		{
			j=i;
			if(startPoint(gas, cost, j))
				return i;
			i += j;
		}
		return -1;
	}
 
	bool startPoint(vector<int> &gas, vector<int> &cost, int& start)
	{
		int n = gas.size();
		int left = 0;
		int temp;
		for(int i=start; i<(n+start); i++)
		{
			temp = i%n;
			left += gas[temp]-cost[temp];
			if(left<0) 
			{
				start = i-start+1;
				return false;
			}
		}
		return true;
	}
};

第一种代码简单,却比较难想出来,第二种还比较好想出来吧。
我想想到底如何对付这些题目呢?尤其如果面试的时候,时间又受限,那更高难度了。

我想到的策略就是:先举些列子,观察他们的特性,然后总结出来,再设计算法吧。谁没做过,能一下子就看出其中的规律吗?

更新第二种思路的更加简洁点的代码:

int canCompleteCircuit2(vector<int> &gas, vector<int> &cost) 
	{
		for (int i = 0; i < cost.size(); )
		{
			int leftGas = 0;
			int j = 0;
			for (; j < cost.size(); j++)
			{
				int k = (i+j)%cost.size();
				leftGas += (gas[k] - cost[k]);
				if (leftGas < 0) break;
			}
			if ( j == cost.size()) return i;
			i+=j+1;
		}
		return -1;
	}

 证明的时候,使用反证法会简单点。

//2014-2-18 update
	int canCompleteCircuit(vector<int> &gas, vector<int> &cost) 
	{
		for (int i = 0; i < gas.size(); )
		{
			int left_gas = 0 , j = 0;
			for ( ; j < gas.size(); j++)
			{
				int t = (i+j)%gas.size();
				left_gas = left_gas + gas[t] - cost[t];
				if (left_gas < 0) break;
			}
			if (j == gas.size()) return i;//错误:j=i?
			else i += j+1;//j+1,计算好下标
		}
		return -1;
	}



### LeetCode 加油站问题 C++ 实现解释与优化 #### 问题背景 加油站问题是经典的贪心算法应用之一。其核心目标是从一系列加油站中找出一个可以作为起点的位置,使得车辆能够沿着环形路径完成一圈行驶而不会中途耗尽燃料。如果无法找到这样的位置,则返回 `-1` 表示无解。 --- #### 算法逻辑分析 此问题的核心思想基于两个条件判断: 1. 如果总加油量减去总消耗量的结果为负数,则无论从哪个站点出发都不可能完成整个循环。 2. 若总加油量大于等于总消耗量,则必然存在至少一个起始点满足条件。通过遍历数组记录当前剩余油量的变化趋势即可定位到合适的起始点[^3]。 具体实现上采用单次扫描的方式,在过程中维护三个变量: - `total_tank`: 记录全局累计的净增油量; - `current_tank`: 跟踪当前位置之前的累积净增油量; - `starting_station`: 当前假设的最优出发点索引。 当某一站点处发现 `current_tank < 0` 的情况时,说明之前选定的任何一点都不能成为有效起点,因此需重置 `current_tank=0` 并更新新的潜在起点至下一站。 --- #### C++ 实现代码 下面是完整的 C++ 实现版本: ```cpp #include <vector> using namespace std; class Solution { public: int canCompleteCircuit(vector<int>& gas, vector<int>& cost) { int total_tank = 0; // 总油箱状态 int current_tank = 0; // 当前局部油箱状态 int starting_station = 0; // 候选起点 for (int i = 0; i < gas.size(); ++i) { total_tank += gas[i] - cost[i]; current_tank += gas[i] - cost[i]; if (current_tank < 0) { // 遇到不可达的情况 starting_station = i + 1; current_tank = 0; } } return total_tank >= 0 ? starting_station : -1; } }; ``` 上述代码实现了 O(n) 时间复杂度和 O(1) 空间复杂度的要求,其中 n 是输入数组长度。 --- #### 关键点解析 1. **为什么可以通过一次遍历来解决问题?** 这是因为一旦某个节点之后的所有子序列都保持非负差值(即加油量不低于花费),则这些部分都可以被安全跳过而不影响最终结果判定。 2. **如何处理边界条件?** 边界条件主要体现在两方面:一是所有站点均不构成闭环;二是某些特殊情况下只有一个或少数几个站点参与计算。程序设计已充分考虑这两种极端情形下的行为表现。 3. **时间与空间效率考量:** 整体流程仅涉及单一线性迭代操作,无需额外存储结构支持辅助运算,故具备较高执行效能。 --- #### 可能存在的改进方向 尽管现有方案已经非常高效,但仍可以从以下几个角度进一步探索可能性: - 对于大规模数据集引入并行化机制加速处理速度; - 结合动态规划方法提供更灵活多样的求解策略以应对不同变种需求。 ---
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值