题目大意:给出n,m,s,t,n表示有n个点,m表示有m条边,然后给出m行数据表示m条边,每条边的数据有连接两点的序号以及该边的权值,问说从点s到点t的最短路径是多少。
解题思路:本题应该是无环正权值的一个图,并且本题如果直接用Dijkstra算法去做的话超时,所以一定要用优先队列去进行优化,《算法竞赛入门经典》中介绍了这种写法,唯一变动的地方就是有向图变成了无向图。
#include <stdio.h>
#include <string.h>
#include <queue>
#include <vector>
using std::make_pair;
using namespace std;
const int N = 400005;
const int INF = 1 << 30;
typedef pair<int, int> pii;
int n, m, s, t;
int d[N], rec[N];
int first[N], u[N], next[N], v[N], w[N];
struct cmp {
bool operator () (const int a, const int b) {
return a % 10 > b % 10;
}
};
priority_queue<pii, vector<pii>, greater<pii> > q;
void init() {
scanf("%d%d%d%d", &n, &m, &s, &t);
for (int i = 0; i < n; i++) first[i] = -1;
int a, b;
m *= 2;
for (int i = 0; i < m; i++) {
scanf("%d%d%d", &u[i], &v[i], &w[i]);
next[i] = first[u[i]];
first[u[i]] = i;
i++;
v[i] = u[i - 1], u[i] = v[i - 1], w[i] = w[i - 1];
next[i] = first[u[i]];
first[u[i]] = i;
}
}
void dijkstra() {
bool rec[N];
for (int i = 0; i < n; i++) d[i] = (i == s ? 0 : INF);
memset(rec, 0, sizeof(rec));
q.push(make_pair(d[s], s));
while (!q.empty()) {
pii f = q.top();
q.pop();
int x = f.second;
if (rec[x]) continue;
rec[x] = 1;
for (int e = first[x]; e != -1; e = next[e]) {
if (d[v[e]] > d[x] + w[e]) {
d[v[e]] = d[x] + w[e];
q.push(make_pair(d[v[e]], v[e]));
}
}
}
}
int main () {
int cas, ti = 1;
scanf("%d", &cas);
while (cas--) {
init();
dijkstra();
printf("Case #%d: ", ti++);
if (d[t] == INF)
printf("unreachable\n");
else
printf("%d\n", d[t]);
}
return 0;
}