Lightoj1013【DP_LCS】

69 篇文章 0 订阅
题意:
给你两个字符串,让你求一个最短字符串,其中存在给出串的种类;
求这个字符串的长度和种类;
思路:
//dp[i,j,k]表示前i个字符,包含s1串前j个字母,包含s2串前k个字符时的方案数。
//按照一定的顺序,碰到相同元素只会留一个,不同元素这个位置就有两种情况


#include<cstdio>
#include<math.h>
#include<queue>
#include<map>
#include<string>
#include<string.h>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int INF=0x3f3f3f3f;
const LL mod=1e9+7;


const int N=50;
char s1[N],s2[N];
int len[N][N];
LL dp[100][N][N];
int LCS()
{
    int n,m;
    n=strlen(s1+1);
    m=strlen(s2+1);
    memset(len,0,sizeof(len));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            if(s1[i]!=s2[j])
                len[i][j]=max(len[i-1][j],len[i][j-1]);
            else
                len[i][j]=len[i-1][j-1]+1;
        }
    }
    return n+m-len[n][m];
}

LL solve(int length)
{
    int n,m;
    n=strlen(s1+1);
    m=strlen(s2+1);
    memset(dp,0,sizeof(dp));
    dp[0][0][0]=1;
    for(int i=1;i<=length;i++)
    {
        dp[i][0][i]=1;
        dp[i][i][0]=1;
        for(int j=1;j<=min(n,i);j++)
        {
            for(int k=1;k<=min(m,i);k++)
            {
                if(s1[j]==s2[k])
                    dp[i][j][k]=dp[i-1][j-1][k-1];
                else
                    dp[i][j][k]=dp[i-1][j-1][k]+dp[i-1][j][k-1];
            }
        }
    }
    return dp[length][n][m];
}

int main()
{
    int T,cas=1;
    int ans1;
    LL ans2;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%s%s",s1+1,s2+1);
        ans1=LCS();
        ans2=solve(ans1);
        printf("Case %d: %d %lld\n",cas++,ans1,ans2);
    }
    return 0;
}


Sigma函数是指一个数字的所有因子之和。给定一个数字n,需要求出有多少个数字的Sigma函数是偶数。\[2\] 为了解决这个问题,可以先筛选出n范围内的素数(范围在10^6即可),然后对n进行素因子分解。对于每个因子,如果它的Sigma函数中连乘的每一项都是偶数,那么整个Sigma函数就是偶数。具体实现中,可以判断每个因子的平方根是否为偶数,如果是偶数,则减去(平方根+1)/2。\[1\] 另外,还可以使用O(1)的做法来解决这个问题。根据观察,所有的完全平方数及其两倍的值都会导致Sigma函数为偶数。因此,可以直接计算n的平方根,然后减去(平方根+1)/2即可得到结果。\[3\] #### 引用[.reference_title] - *1* [Sigma Function](https://blog.csdn.net/PNAN222/article/details/50938232)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [【LightOJ1336】Sigma Function(数论)](https://blog.csdn.net/qq_30974369/article/details/79009498)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值