LightOJ 1005 Rooks 动态规划dp || 组合数学

博客详细介绍了如何解决LightOJ的1005题——Rooks问题。在n*n的棋盘上放置k个棋子,使得任意两个棋子不互相攻击的方案数。提供了两种解法,一种是动态规划(dp),状态转移方程为dp[i][j] = dp[i-1][j] + dp[i-1][j-1] * (n- (j-1));另一种是组合数学的方法,利用组合公式并考虑重复枚举的情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:http://www.lightoj.com/volume_showproblem.php?problem=1005

题意:给定一个n * n的棋盘,往上面放k个棋子,棋子可以攻击所在的行或列,求把k个棋子放在棋盘上使任意两个不能互相攻击的方案数

思路:有两种解法,dp或者组合数学

一:dp方法

设dp[i][j]为前i行放j个棋子时满足条件的方案数,dp[i][0]置为1,可以得到状态转移方程dp[i][j] = dp[i-1][j] + dp[i-1][j-1] * (n- (j-1))。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define debug() puts("here")
using namespace std;

typedef long long ll;
const int N = 110;
int cas;
ll dp[N][N];
int main()
{
    int t, n, k;
    scanf("%d", &t);
    while(t--)
    {
        scanf("%d%d", &n, &k);
        memset(dp, 0, sizeof dp);
        dp[0][0] = 1;
        for(int i = 1; i <=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值