1.Apriori算法
如果一个事务中有X,则该事务中则很有可能有Y,写成关联规则
{X}→{Y}
将这种找出项目之间联系的方法叫做关联分析。关联分析中最有名的问题是购物蓝问题,在超市购物时,有一个奇特的现象——顾客在买完尿布之后通常会买啤酒,即{尿布}→{啤酒}。原来,妻子嘱咐丈夫回家的时候记得给孩子买尿布,丈夫买完尿布后通常会买自己喜欢的啤酒。
考虑到规则的合理性,引入了两个度量:支持度(support)、置信度(confidence),定义如下
Apriori算法是一种用于关联分析的方法,旨在找出数据集中频繁出现的项集和高置信度的规则。它通过支持度和置信度来衡量规则的有效性,并避免了暴力搜索的高计算成本。在购物篮问题中,Apriori算法可以发现如{'尿布'}→{'啤酒'}这样的关联规则。文章提到Apriori在某些数据集上的运行速度较慢,需要进一步优化。参考文献包括《machine learning in action》和《Introduction to data mining》。
如果一个事务中有X,则该事务中则很有可能有Y,写成关联规则
{X}→{Y}
将这种找出项目之间联系的方法叫做关联分析。关联分析中最有名的问题是购物蓝问题,在超市购物时,有一个奇特的现象——顾客在买完尿布之后通常会买啤酒,即{尿布}→{啤酒}。原来,妻子嘱咐丈夫回家的时候记得给孩子买尿布,丈夫买完尿布后通常会买自己喜欢的啤酒。
考虑到规则的合理性,引入了两个度量:支持度(support)、置信度(confidence),定义如下
6万+
907
3782

被折叠的 条评论
为什么被折叠?