关闭

堆排序(Heapsort)之Java实现

标签: 堆排序排序算法算法java
46203人阅读 评论(20) 收藏 举报
分类:

堆排序算法介绍

堆是一种重要的数据结构,为一棵完全二叉树, 底层如果用数组存储数据的话,假设某个元素为序号为i(Java数组从0开始,i为0到n-1),如果它有左子树,那么左子树的位置是2i+1,如果有右子树,右子树的位置是2i+2,如果有父节点,父节点的位置是(n-1)/2取整分为最大堆和最小堆,最大堆的任意子树根节点不小于任意子结点,最小堆的根节点不大于任意子结点。所谓堆排序就是利用堆这种数据结构来对数组排序,我们使用的是最大堆。处理的思想和冒泡排序,选择排序非常的类似,一层层封顶,只是最大元素的选取使用了最大堆。最大堆的最大元素一定在第0位置,构建好堆之后,交换0位置元素与顶即可。堆排序为原位排序(空间小), 且最坏运行时间是O(nlgn),是渐进最优的比较排序算法。

堆排序算法Java实现

如《插入排序(Insertsort)之Java实现》一样,先实现一个数组工具类。代码如下:

public class ArrayUtils {
	
	    public static void printArray(int[] array) {
		    System.out.print("{");
		    for (int i = 0; i < array.length; i++) {
			    System.out.print(array[i]);
			    if (i < array.length - 1) {
				    System.out.print(", ");
			    }
		    }
		    System.out.println("}");
	    }

	    public static void exchangeElements(int[] array, int index1, int index2) {
		    int temp = array[index1];
		    array[index1] = array[index2];
		    array[index2] = temp;
	    }
    }

堆排序的大概步骤如下:

  1. 构建最大堆。
  2. 选择顶,并与第0位置元素交换
  3. 由于步骤2的的交换可能破环了最大堆的性质,第0不再是最大元素,需要调用maxHeap调整堆(沉降法),如果需要重复步骤2

堆排序中最重要的算法就是maxHeap,该函数假设一个元素的两个子节点都满足最大堆的性质(左右子树都是最大堆),只有跟元素可能违反最大堆性质,那么把该元素以及左右子节点的最大元素找出来,如果该元素已经最大,那么整棵树都是最大堆,程序退出,否则交换跟元素与最大元素的位置,继续调用maxHeap原最大元素所在的子树。该算法是分治法的典型应用。具体代码如下:

public class HeapSort {
		public static void main(String[] args) {
			int[] array = { 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3 };

			System.out.println("Before heap:");
			ArrayUtils.printArray(array);

			heapSort(array);

			System.out.println("After heap sort:");
			ArrayUtils.printArray(array);
		}

		public static void heapSort(int[] array) {
			if (array == null || array.length <= 1) {
				return;
			}

			buildMaxHeap(array);

			for (int i = array.length - 1; i >= 1; i--) {
				ArrayUtils.exchangeElements(array, 0, i);

				maxHeap(array, i, 0);
			}
		}

		private static void buildMaxHeap(int[] array) {
			if (array == null || array.length <= 1) {
				return;
			}

			int half = array.length / 2;
			for (int i = half; i >= 0; i--) {
				maxHeap(array, array.length, i);
			}
		}

		private static void maxHeap(int[] array, int heapSize, int index) {
			int left = index * 2 + 1;
			int right = index * 2 + 2;

			int largest = index;
			if (left < heapSize && array[left] > array[index]) {
				largest = left;
			}

			if (right < heapSize && array[right] > array[largest]) {
				largest = right;
			}

			if (index != largest) {
				ArrayUtils.exchangeElements(array, index, largest);

				maxHeap(array, heapSize, largest);
			}
		}
	}

20
10

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:630528次
    • 积分:5881
    • 等级:
    • 排名:第4499名
    • 原创:73篇
    • 转载:0篇
    • 译文:6篇
    • 评论:156条
    博客专栏
    文章分类
    最新评论