bzoj 4461: [Jsoi2013]美丽家园

原创 2016年05月31日 10:40:05

千分矩阵乘法题
dp[i][j]表示第i行,j状态是否可行
矩乘就好,需要高精度

#include<bits/stdc++.h>
using namespace std;
inline void splay(int&v){
    v=0;char c=0;int p=1;
    while(c<'0'||c>'9'){if(c=='-')p=-1;c=getchar();}
    while(c>='0'&&c<='9'){v=(v<<3)+(v<<1)+c-'0';c=getchar();}
    v*=p;
}
const int MAXD = 12, DIG = 9, BASE = 1000000000;  
const unsigned long long BOUND = numeric_limits <unsigned long long> :: max () - (unsigned long long) BASE * BASE;  
class bignum{private:int digits[MAXD];int D;  
public:friend ostream &operator<<(ostream &out,bignum &c);  
inline void trim(){while(D>1&&digits[D-1]==0)D--;}  
inline void dealint(long long x){memset(digits,0,sizeof(digits));D=0;do{digits[D++]=x%BASE;x/=BASE;}while(x>0);  }  
inline void dealstr(char *s){memset(digits,0,sizeof(digits));int len=strlen(s),first=(len+DIG-1)%DIG+1;D=(len+DIG-1)/DIG;for(int i=0;i<first;i++)digits[D-1]=digits[D-1]*10+s[i]-'0';for(int i=first,d=D-2;i<len;i+=DIG,d--)for(int j=i;j<i+DIG;j++)digits[d]=digits[d]*10+s[j]-'0';trim();}  
inline char *print(){  
trim();char *cdigits=new char[DIG*D+1];int pos=0,d=digits[D-1];do{cdigits[pos++]=d%10+'0';d/=10;}while(d > 0);reverse(cdigits,cdigits+pos);for(int i=D-2;i>=0;i--,pos += DIG)  
for(int j=DIG-1,t=digits[i];j>= 0;j--){cdigits[pos+j]=t%10+'0';t/=10;}cdigits[pos]='\0';return cdigits;} 
bignum(){dealint(0);}
bignum(long long x){dealint(x);}  
bignum(int x){dealint(x);}  
bignum(char *s){dealstr(s);}
inline bool operator < (const bignum &o) const{if(D != o.D)return D < o.D;for(int i = D-1; i>=0; i--)if(digits[i] != o.digits[i])return digits[i] < o.digits[i];return false;}  
bool operator >  (const bignum & o)const{return o < *this;}  
bool operator <= (const bignum & o)const{return !(o < *this);}  
bool operator >= (const bignum & o)const{return !(*this < o);}  
bool operator != (const bignum & o)const{return o < *this || *this < o;}  
bool operator == (const bignum & o)const{return !(o < *this) && !(*this < o);}  
bignum &operator++(){*this = *this  + 1;return *this;}  
bignum operator ++(int){bignum old = *this;++(*this);return old;}  
inline bignum operator << (int p) const{bignum temp;temp.D=D+p;  
for(int i=0;i<D;i++)temp.digits [i + p] = digits [i];for (int i = 0; i < p; i++)temp.digits [i] = 0;return temp;}  
inline bignum operator >> (int p)const{bignum temp;temp.D=D-p;for(int i=0;i<D-p;i++)temp.digits[i]=digits[i+p];for(int i=D-p;i<D;i++)temp.digits[i]=0;return temp;}  
bignum &operator += (const bignum &b){  *this = *this + b;  return *this;}  
bignum &operator -= (const bignum &b){  *this = *this - b;  return *this;  }  
bignum &operator *= (const bignum &b){  *this = *this * b;  return *this;  }  
bignum &operator /= (const bignum &b){  *this = *this / b;  return *this;  }  
bignum &operator %= (const bignum &b){  *this = *this % b;  return *this;  }  
inline bignum operator + (const bignum &o) const  {  bignum sum = o;  int carry = 0;  for (sum.D = 0; sum.D < D || carry > 0; sum.D++)  {  sum.digits [sum.D] += (sum.D < D ? digits [sum.D] : 0) + carry;  if (sum.digits [sum.D] >= BASE)  {  sum.digits [sum.D] -= BASE;  carry = 1;  }  else  carry = 0;  }  sum.D = max (sum.D, o.D);  sum.trim ();  return sum;  }  
inline bignum operator - (const bignum &o) const  {  bignum diff = *this;  for (int i = 0, carry = 0; i < o.D || carry > 0; i++)  {  diff.digits [i] -= (i < o.D ? o.digits [i] : 0) + carry;  if (diff.digits [i] < 0)  {  diff.digits [i] += BASE;  carry = 1;  }  else  carry = 0;  }  diff.trim ();  return diff;  }  
inline bignum operator * (const bignum &o) const  {  bignum prod = 0;  unsigned long long sum = 0, carry = 0;  for (prod.D = 0; prod.D < D + o.D - 1 || carry > 0; prod.D++)  {  sum = carry % BASE;  carry /= BASE;  for (int j = max (prod.D - o.D + 1, 0); j <= min (D - 1, prod.D); j++)  {  sum += (unsigned long long) digits [j] * o.digits [prod.D - j];  if (sum >= BOUND)  {  carry += sum / BASE;  sum %= BASE;}}carry += sum / BASE;prod.digits [prod.D] = sum % BASE;}prod.trim ();return prod;}  
inline bignum range (int a, int b) const{  bignum temp = 0;  temp.D = b - a;  for (int i = 0; i < temp.D; i++)  temp.digits [i] = digits [i + a];  return temp;  }  
inline double double_div (const bignum &o) const  {  double val = 0, oval = 0;  int num = 0, onum = 0;  for (int i = D - 1; i >= max (D - 3, 0); i--, num++)  val = val * BASE + digits [i];  for (int i = o.D - 1; i >= max (o.D - 3, 0); i--, onum++)  oval = oval * BASE + o.digits [i];  return val / oval * (D - num > o.D - onum ? BASE : 1);  }  
inline pair <bignum, bignum> divmod (const bignum &o) const  {  bignum quot = 0, rem = *this, temp;  for (int i = D - o.D; i >= 0; i--)  {  temp = rem.range (i, rem.D);  int div = (int) temp.double_div (o);  bignum mult = o * div;  while (div > 0 && temp < mult)  {  mult = mult - o;  div--;  }  while (div + 1 < BASE && !(temp < mult + o))  {  mult = mult + o;  div++;  }  rem = rem - (o * div << i);  if (div > 0)  {  quot.digits [i] = div;  quot.D = max (quot.D, i + 1);  }  }  quot.trim ();  rem.trim ();  return make_pair (quot, rem);  }  
inline bignum operator / (const bignum &o) const  {  return divmod (o).first;  }  
inline bignum operator % (const bignum &o) const  {  return divmod (o).second;  }  
inline bignum power (int exp) const  {  bignum p = 1, temp = *this;  while (exp > 0)  {  if (exp & 1) p = p * temp;  if (exp > 1) temp = temp * temp;  exp >>= 1;  }  return p;  }  
inline bignum factorial() const  {  bignum ans = 1, num = *this;  if (num == 0 || num == 1)  return ans;  while (!(num < 0 || num == 0))  {  ans = ans * num;  num = num - 1;  }  return ans;  }  };  
ostream &operator<<(ostream &out, bignum &c)  {  out<<c.print();  return out;  }  
istream &operator >> (istream &in,bignum &c)  {  char s[10000];  in>>s;  c = s;  return in;  }  
bignum gcd(bignum a,bignum b){return b==0?a:gcd(b,a%b);}


bignum n;
int m,mod;
struct M{
    unsigned v[33][33],f;
    M(){
        memset(v,0,sizeof v);f=0;
    }
    friend M operator * (const M &a,const M &b){
        M c;
        for(int i=1;i<=a.f;i++){
            for(int j=1;j<=a.f;j++){
                for(int k=1;k<=a.f;k++){
                    c.v[i][j]+=a.v[i][k]*b.v[k][j];
                }
            }
        }
        c.f=a.f;
        for(int i=1;i<=c.f;i++){
            for(int j=1;j<=c.f;j++){
                c.v[i][j]%=mod;
            }
        }
        return c;
    }
}A,B,C;
int main(){
    freopen("xxx.in","r",stdin);
    freopen("xxx.out","w",stdout);
    cin>>n>>m>>mod;
    A.f=B.f=C.f=1<<m;
    for(int i=1;i<=A.f;i++)A.v[i][i]=1;
    for(int i=1;i<=B.f;i++){
        for(int j=1;j<=B.f;j++){
            int a=i-1,b=j-1,flag=1;
            for(int k=1;k<m;k++){
                if((a&b&3)==3)flag=0;
                if(((a^63)&(b^63)&3)==3)flag=0;
                a>>=1,b>>=1;
            }
            B.v[i][j]=flag;
        }
    }
    n=n-1;
    while(n!=0){
        if(n%2==1)A=A*B;
        n=n/2;B=B*B;
    }
    int ans=0;
    for(int i=1;i<=A.f;i++){
        for(int j=1;j<=A.f;j++){
            ans+=A.v[i][j];
        }
    }
    cout<<ans%mod<<endl;
}
版权声明:233333333333333333333333333333333333333333

相关文章推荐

bzoj 4464 [Jsoi2013]旅行时的困惑

别信官方题解 我们可以对每个节点维护有多少条 自己向儿子的边 和有多少条 儿子向自己的边 对于一个节点,一条儿子向自己的边和自己向另外一个儿子的边可以直接合并成一条航线 然后会有多余的,留到自己...

BZOJ 4459 [Jsoi2013] 丢番图

数论(因式分解+质因数分解)

bzoj 4466 : [Jsoi2013]超立方体

这题有毒 首先,我们发现如果一张图合法,那么点数为2n2^{n},边为2n−1∗n2^{n-1}*n 每个点度数为nn,并且图中没有奇数长度的环 我们可以假设00号点的新编号为0,并且把00点相...

JZOJ 3158. 【JSOI2013】丢番图

Description丢番图 是亚历山大时期埃及著名的数学家。他是最早研究整数系数不定方程的数学家之一。为了纪念他,这些方程一般被称作丢番图方程。最著名的丢番图方程之一是 xn+yn=znx^n+y^...

BZOJ 1027 JSOI 2007 合金 计算几何+最小环

题目大意给出一个CPU处理事件的规则,给出一些事件,问处理这些事件的顺序和结束时间。思路我们只需要维护一个堆来模拟他说的规则,之后按顺序输出就行了。CODE#define _CRT_SECURE_NO...

BZOJ 1452 [JSOI2009]Count 二维树状数组

题意: 链接 方法: 二维树状数组 解析: 也是好久没写树状数组,从wfy那听来到水题(他说的找他)(然而还是想了想- -毕竟OI) 读完题后的确想用树状数组来做这道题,但是这要统计的是c种...

BZOJ 1016 JSOI2008 最小生成树计数 Kruskal

题目大意:给定一个无向图,求最小生成树的方案数 首先对于一个无向图的最小生成树,每种边权的边的数量是一定的 首先我们先跑一遍Kruskal,求出最小生成树上每种边权的出现次数 然后对于每种出现在最小生...

FFT 【JSOI2012】bzoj4332 分零食

题目大意:有n个小朋友,m块糖。 给小朋友分糖,如果一个小朋友分不到糖,那他后面的小朋友也分不到糖。 每个小朋友有一个喜悦值,有三个参数,O,S,U,设一个小朋友分到糖数为x,则这个小朋友的喜悦值...

[Wikioi 2913][BZOJ 1029][JSOI 2007]建筑抢修

题目描述 Description 小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏: 经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者。但是T部落的基地里已经有N个建筑设施受到了...

BZOJ 1822 [JSOI2010]Frozen Nova 冷冻波

很明显的一道最大流,利用计算几何判断是否被攻击的关系。二分时间以判断攻击次数,每次重新建图。#include #include #include #include #include #include ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)