2018/2/9

版权声明:233333333333333333333333333333333333333333 https://blog.csdn.net/lcrtest/article/details/79298614

1.[Gym-101608H] [Problem H]

题意:给出一个序列,每个位置为’.’或’+’,加号代表加油站,点代表空地。现在至多移动一个加油站,使得所有点到最近加油站的距离最大值最小。
做法:二分答案,问题变为求某个答案是否合法
如果有两个点区间大于2mid+1不合法
如果有一个区间大于4mid+2不合法
否则看能否调动,一种是从密集的地方调一个过来,一种是移动这个区间两边的加油站使得平衡
复杂度nlogn

//Copyright(c)2017 Mstdream
#include<bits/stdc++.h>
using namespace std;

inline void splay(int &v){
    v=0;char c=0;int p=1;
    while(c<'0' || c>'9'){if(c=='-')p=-1;c=getchar();}
    while(c>='0' && c<='9'){v=(v<<3)+(v<<1)+c-'0';c=getchar();}
    v*=p;
}
int f[1000010],cnt,n;
char s[1000010];
bool check(int mid){
    f[0]=-mid,f[cnt+1]=n+mid+1;
    int ned=0,can=0;
    for(int i=0;i<=cnt;i++){
        if(f[i+1]-f[i]>2*mid+1){
            if(f[i+1]-f[i]>4*mid+2)return 0;
            else ned++;
            if(i!=cnt&&f[i+2]-f[i]<=4*mid+2)can=1;
            if(i!=0&&f[i+1]-f[i-1]<=4*mid+2)can=1;
        }
    }
    if(ned==0)return 1;
    if(ned>1)return 0;
    if(can)return 1;
    if(f[2]-1<=mid)can=1;
    if(n-f[cnt-1]<=mid)can=1;
    for(int i=1;i<cnt-1;i++){
        if(f[i+2]-f[i]<=mid*2+1)can=1;
    }
    return can;
}
int main(){
    freopen("stations.in","r",stdin);
    int T;splay(T);
    while(T--){
        cnt=0;
        scanf("%d%s",&n,s+1);
        for(int i=1;i<=n;i++){
            if(s[i]=='+')f[++cnt]=i;
        }
        int l=0,r=n;
        while(l!=r){
            int mid=l+r>>1;
            if(check(mid))r=mid;
            else l=mid+1;
        }
        printf("%d\n",l);
    }
}

还有一种做法,枚举调动的加油站,然后调到最长的区间

2.Gym - 101505C

题意:给出一堆第一象限的点,求一条线段端点分别在xy轴上,其与坐标轴围成的三角形能包括所有点,求最小线段长
做法:本题做法很多,这里提出最好实现的做法。
三分x轴的端点坐标,求出y坐标,直接算长度三分下去

//Copyright(c)2017 Mstdream
#include<bits/stdc++.h>
using namespace std;
const double eps=1e-7;
const int N=1000010;
int x[N],y[N],n;
double calc(double p){
    double q=0;
    for(int i=1;i<=n;i++){
        q=max(q,(p*y[i])/(p-x[i]));
    }
    return p*p+q*q;
}
int main(){
    while(~scanf("%d",&n)){
        int mx=0;
        for(int i=1;i<=n;i++){
            scanf("%d%d",&x[i],&y[i]);
            mx=max(mx,x[i]);
        }
        double l=mx,r=30000;
        while(r-l>eps){
            double x=l+(r-l)/3;
            double y=r-(r-l)/3;
            if(calc(x)<calc(y))r=y;
            else l=x;
        }
        double ans=calc(l);
        printf("%.3f\n",sqrt(ans));
    }
}

3.[Gym-101156E] [Problem E]

题意:给出一个排列,求最长上升序列的数量
做法:同样有很多做法,这里提出一个个人认为最精妙的做法
我们把每个数插入树状数组,点x的权值代表1x作为结尾的最长的值
在每个节点记录一个数量,如果两个长度相同的话数量相加,否则取长的那一个的数量
这样做非常简单,在复杂度不变的情况下常数减小了很多,同时减小了代码复杂度

//Copyright(c)2017 Mstdream
#include<bits/stdc++.h>
using namespace std;
inline void splay(int &v){
    v=0;char c=0;int p=1;
    while(c<'0' || c>'9'){if(c=='-')p=-1;c=getchar();}
    while(c>='0' && c<='9'){v=(v<<3)+(v<<1)+c-'0';c=getchar();}
    v*=p;
}
const int N=200010;
struct Q{
    int len,v;
}s[N];
int n,m;
void upd(int&v){if(v>=m)v-=m;}
Q get(int x){
    Q t=(Q){0,1};
    while(x){
        if(s[x].len>t.len)t=s[x];
        else if(s[x].len==t.len)t.v+=s[x].v,upd(t.v);
        x-=x&(-x);
    }
    return t;
}
void ins(Q t,int x){
    while(x<=n){
        if(s[x].len<t.len)s[x]=t;
        else if(s[x].len==t.len)s[x].v+=t.v,upd(s[x].v);
        x+=x&(-x);
    }
}
int main(){
    splay(n),splay(m);
    for(int i=1,x;i<=n;i++){
        splay(x);Q t=get(x);
        t.len++;ins(t,x);
    }
    printf("%d\n",get(n).v);
}

4.[ZOJ-3842] [Problem C]

题意:求0<=k<=nC(n,k)9的倍数的k的个数。n1000位数
做法:首先明白kummer定理:C(n,k)3的指数为3进制下k+(nk)进位的次数
我们把n转为三进制,正难则反,我们计算只进位了1次和没进位的,最后减去即可

bignum A,B,C[3][3][3][3],D;
const int N=4010;
char s[N];
int a[N],t[N],p[N],cnt;
int f[3],g[3];
int main(){
    int T;cin>>T;
    f[0]=1,f[1]=2,f[2]=3;
    g[0]=2,g[1]=1,g[2]=0;
    while(T--){
        A=0,B=1;cnt=0;
        scanf("%s",s+1);int len=strlen(s+1);
        for(int i=1;i<=len;i++)t[i]=s[i]-'0',A=A*10+t[i];
        for(int i=1,j=len;i<j;i++,j--)swap(t[i],t[j]);
        while(1){
            int now=0,mx=0;
            for(int i=len;i>=1;i--){
                now=now*10+t[i];
                a[i]=now/3;now%=3;
                if(a[i])mx=max(mx,i);
            }
            p[++cnt]=now;
            if(mx==0)break;
            for(int i=1;i<=mx;i++)t[i]=a[i];
            len=mx;
        }
        for(int i=1;i<=cnt;i++){
            B=B*f[p[i]];
        }
        A=A+1;
        A-=B;
        for(int i=0;i<3;i++){
            for(int j=0;j<3;j++){
                for(int l=0;l<3;l++){
                    for(int r=0;r<3;r++){
                        C[i][j][l][r]=B/f[i]*g[j]/f[l]*f[r];
                    }
                }
            }
        }
        for(int i=1;i<cnt;i++){
            if(p[i+1]!=0){
                A-=C[p[i]][p[i]][p[i+1]][p[i+1]-1];
            }
        }
        cout<<A<<endl;
    }
}

PS:下周起开始细数ACM开始后的趣题,也许这些题不难,但是我认为很巧,或者方法很巧。时间可能有点久远,如有错误请指出谢谢!QQ1152147486

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页