团队不需要在计划会上考虑到所有事情

几周前,我参加了一个很痛苦的迭代计划会。类似的会议你可能也参加过,团队竭尽所能试图分析出本次迭代所要完成的所有任务,并就每一个任务具体需要花费多少小时进行无休止的争论。

然而这种级别的细节讨论其实是不需要的。


迭代计划会的目的是从产品列表中挑选出本次迭代要完成的条目,并对如何完成有一个大致的想法,达到这个目的并不需要团队了解每一个任务,当然更不需要团队知道某个任务是需要花费4小时还是5小时。

请不要回答“取决于”

我经常会被问到一个团队应该花多长时间召开迭代计划会,与其闪烁其词的说“这取决于。。。”或者“时间刚好足够计划好本次迭代的内容”,有一个更实用的方法决定你是否花了合适的时间在迭代计划会上。。。

通过对成功团队的迭代计划会的多年观察,我建议团队应该在计划会上明确三分之二的本次迭代的任务,也就是本次迭代另外三分之一的任务应该在迭代过程中进一步明确。

一个例子

比如:迭代结束时,团队完成了60个任务,交付了一些产品条目,我的建议是大约三分之二的任务(这个案例中,就是40个)应该在计划会上确认,剩下的三分之一(20个任务)应该留在迭代过程中发现。

当然,如果ScrumMaster在计划会的时候关上门,要求团队更深入更长时间的思考,团队也许可以识别出另外10个任务。但是代价呢?这其实是不值得的,计划会的目的是从产品列表中选出本次迭代要完成的产品条目,第二目标是尽快开始和结束会议。

如果你的团队已经习惯于安排的很满的迭代,也许你需要稍微后退一步,让你的迭代安排不那么满,在《敏捷估算和计划》这本书里,我将这个称之为“计划外时间”。

我的观点是,团队在计划会上应该快速识别他们需要做的最重要的事情,一些小的任务可以先忽略,有一些任务也许团队可以耗时耗力想出来,但是不值得,因为反正团队也不能识别出所有的任务。

开会,散会,干活。

为计划外的工作留下资源

留一些资源给计划会上没有深入分析的任务,留一些资源给计划会上讨论了但是可能会变大的任务,留多少资源呢?给一个预估值,下一个迭代时调整这个预估值,经过几个迭代之后,这个估算值就会接近准确。

注意,我说的是迭代内的任务数,而非小时数,团队在计划会上没有考虑到的任务会变成一些更小的任务,不会有人忘记“实现某个功能”,团队只是未考虑到与之相关的更小的任务。

你认为呢?

你可以在评论中分享你的想法,你是怎么尝试缩短计划会的?哪些办法成功了?哪些办法没有成功?

作者:Mike Cohn


本文转自: leangoo.com




深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值