关闭

Prototype Learning整理

标签: prototype
190人阅读 评论(0) 收藏 举报
分类:

已经确定保研,时间也比较清闲,就跟着本科的导师每周参加她带的研究生的组会,也读些论文做做报告。
把最近读的五篇原型学习的相关论文整理出了一个概述,放出来存个档。
前两篇是人脸识别,第三篇是亲属关系鉴定,后两篇是心理认知领域的。

Prototype based feature learning for face image set classification

Mingbo Ma ; Ming Shao ; Xu Zhao ; Yun Fu
Automatic Face and Gesture Recognition (FG), 2013 10th IEEE International Conference and Workshops on
DOI: 10.1109/FG.2013.6553702
Publication Year: 2013 , Page(s): 1 - 6
IEEE Conference Publications

概要和主要贡献:

受认知领域的原型概念的激发,该论文在人脸识别中,通过在图像集上进行原型构造以获得有识别力的特征表示。这篇文章的贡献在两个方面,一是提出使用原型图像集作为共同参照,来充分代表任何相同类型的图像集;二是提出了新的图像集特征提取框架,该框架基于任意图像集和原型图像集之间的最大化间距准则提取超平面特征。

实验流程:

这篇论文通过基于原型的特征学习来完成人脸图像集的分类,从而达到人脸识别的目标。
实验中有三种类型的人脸:原型脸(prototype set XP,np个人)、目标脸(probe set XQ,nq个人)和画廊脸(gallery set XG,ng个人),每个人都有多张人脸。其中原型脸中的人不存在于目标脸和画廊脸中。最初的图像特征由串联的图像像素来描述
首先通过线性支持向量机(SVM)及间距最大化准则,来学习目标脸、画廊脸与原型脸之间的差异(即超平面,hyperplane),并将其作为描述人脸的新的特征。【举例来讲,Adam是目标脸中的一个人,他有n张脸构成了他的脸集;通过线性SVM来学习他与原型脸np个人中的每个人之间的区别,通过间距最大化准则得到了区分开他与原型脸中每个人之间的最优超平面,那么这np个超平面就成为了他的新的特征。】
之后通过average pooling来整合所有的比较结果【对于上例来讲,就是Adam的np个超平面特征】,从而对于每个人均可得到“summarized normal face”。
最后使用欧氏距离以及最先进的多类分类器(如最近邻法),进行最后的判断,从而识别出目标脸的身份。

Learning Prototype Hyperplanes for Face Verification in the Wild

Meina Kan, Dong Xu, Member, IEEE, Shiguang Shan,
Member, IEEE, Wen Li, Student Member, IEEE,
and Xilin Chen, Senior Member, IEEE
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 8, AUGUST 2013

概要:

本文介绍了一种进行人脸验证的新方法Prototype Hyperplane Learning (PHL),即判断两张人脸是不是同一个人。该方法仅使用弱标记的训练样本,利用SVM模型的超平面寻求对人脸的中等水平的特征表示,并使用Fisher’s Linear Discriminant like(FLD-like)优化函数得到最优的超平面中层特征,最后使用Side-Information based Linear Discriminant(SILD)来进行降维,使用cosine function来进行相似度评估,完成最终的人脸验证。

实验过程:

实验采用了一个包含N个样本的无标记样本集X,以及一个包括M1对来自相同目标样本和M0对来自不同目标样本的弱标记样本集。所有样本均使用低层特征描述(如Gabor或者LBP特征)。
首先使用线性SVM对未标记样本集进行分类,假设可以得到C个线性SVM模型,即求解出C个超平面,可得到C个系数向量。
从而通过系数向量得到对弱标记样本集的中层特征表示,使用FLD-like优化函数,根据最大化来自不同目标样本对间距离、最小化来自相同目标样本对间距离的准则,求解出系数矩阵的定义。接着重定义系数矩阵的求解,使其成为一个回归问题,从而通过反复迭代求解出系数矩阵。
最后可以使用系数矩阵得到对测试脸对的中层特征表示,通过SILD方法进行降维,之后使用cosine function进行相似度比较,得出最终判断。

主要贡献:

仅使用无标记样本集和弱标记样本集完成人脸验证。

Prototype-Based Discriminative Feature Learning for Kinship Verification

Yan, H. ; Lu, J. ; Zhou, X.
Cybernetics, IEEE Transactions on
Volume: PP , Issue: 99
DOI: 10.1109/TCYB.2014.2376934
Publication Year: 2014 , Page(s): 1
IEEE Early Access Articles

概要:

对亲属关系验证,提出了新的基于原型的识别特征学习方法prototype-based discriminative feature learning (PDFL) method。这篇文章目的在于学习识别性的中层特征,来更好的描述人脸图像的亲属关系。为了达到这个目标,构建未标记亲属关系的人脸样本集作为参考集。然后,将人脸亲属数据训练集中的每个样本表示为一个中层的特征向量,通过最小化同类样本(亲缘关系)、最大化相邻类间样本 (没有亲戚关系)间距的准则对其进行优化。为了更好地使用样本的多种低层特征,进一步提出多视角multiview PDFL方法来学习多个中层特征从而提高验证性能。

实验流程:

实验采用了一个包含N个样本的无标记样本集Z,以及一个包括M对具有亲属关系的弱标记样本集S。所有样本均使用低层特征描述(如LBP特征)。
首先使用线性SVM对未标记样本集进行分类,假设可以得到K个线性SVM模型,即求解出K个超平面,可得到K个系数向量。
从而通过系数向量得到对弱标记样本集的中层特征表示,根据最小化同类样本(亲缘关系)、最大化相邻类间样本 (没有亲戚关系)间距的准则对其进行优化,得出系数矩阵的定义方程。接着重定义系数矩阵的求解,使其成为一个回归问题,从而通过反复迭代求解出系数矩阵。即PDFL方法。
另外为了充分利用样本的多种低层特征,从而提高亲属关系验证的性能,进一步提出了MPDFL方法,即为不同低层特征赋予不同权重并进行组合,其他过程同上。
最后实验采用了使用RBF核函数的支持向量机进行了最终的亲属关系验证。

Prototype formation of faces: A case of pseudo-memory

Robert L. Solso and Judith E. McCarthy
British Journal of Psychology(1981), 72, 499-503 Printed in Great Britain

概要:

通过Identikit工具构造原型脸,选取四个特征:头发、眼睛、鼻子和下巴、嘴,由此构造0%、25%、50%、75%相似度衍生人脸集。让参与实验者先观察记忆多张人脸(不包括原型脸),随后在一段时间间隔后观察测试脸集(包括原型脸),指出哪些人脸是见过的、哪些是没有见过的,从而来研究人脸的原型构成以及伪记忆现象。在时间间隔分别为短时和6个星期的实验中,实验结果均显示受试者以很高的确信度将没有见过的原型脸误认为见过的脸,这种结果证实了原型模式理论(prototype and schema theory)。

实验流程:

随机构造三张原型脸,然后对每张原型脸均得出0%、25%、50%、75%不同相似等级的衍生样本。从这些衍生样本中选择3张75%相似度的样本、4张50%相似度的样本和3张25%相似度的样本构成一个包括10张人脸的图集,展示给36个实验参与者观察记忆,每张人脸被展示10秒钟。
在实验条件1中,受试者在观察记忆完人脸之后,先参加5分钟的引导任务,接着观察测试脸集,并判断哪些是见过的人脸,哪些是没见过的人脸,并为其确信度进行评级。
在实验条件2中,受试者在观察记忆完人脸之后,空留6个星期的时间间隔,接着接受与上述相同的测试。

主要贡献:

对复杂刺激源的原型构成的评估:对于复杂刺激源的一般性视觉辨认,反映了对某些特定信息的精确编码,从而可以得出原型的构成与存储是人类记忆的重要方式。
对样本与原型的记忆持续时长的检验:频繁接触的一些特征在最初的展示过程中就被进行了记忆编码,并将被永久存储。

Recovering faces from memory: the distracting influence of external facial features

Charlie D. Frowd (1*)
Faye Skelton (1)
Chris Atherton (1)
Melanie Pitchford (2)
Gemma Hepton (1)
Laura Holden (1)
Alex H. McIntyre (3)
Peter J.B. Hancock (3)
(1) School of Psychology, University of Central Lancashire, PR1 2HE
(2) Department of Psychology, Lancaster University, LA1 4YF
(3) Psychology, School of Natural Sciences, University of Stirling, FK9 4LA
*Corresponding author: Charlie Frowd, School of Psychology, University of Central
Lancashire, Preston PR1 2HE, UK. cfrowd@uclan.ac.uk. (01772) 893439.

概要:

通过EvoFIT(用于合成由犯罪现场目击证人提供的嫌疑犯的照片)来突出、改变或是彻底移除头发、耳朵、颈部、肩部等外部特征,之后对面部记忆进行研究。从而得出结论:外部特征对于人脸根据记忆重建的干扰大于帮助。

实验流程及结论:

该论文将人脸五官定义为内部特征,将头发、耳朵、颈部、肩膀等定义为外部特征。三个实验中均有Constructor、target、evaluator三种角色。其中constructor不熟悉target,观察记忆target照片,随后根据记忆对target的人脸进行重建;evaluator对target非常熟悉,观察constructor构建的人脸并指出姓名,通过指认的正确率来评估人脸重建的可辨识度,从而验证外部特征对于人脸根据记忆重建的影响。
实验1:外部特征的高斯模糊程度越高,内部特征构建的可辨识度越高。
实验2:增加外部特征的匹配度,带来内部特征构建可辨识度的提高;但最高匹配情况下,仍低于无外部特征干扰的可辨识度。
实验3:完全移除外部特征比高斯模糊外部特征效果更好
通过三个实验不断递进的验证了外部特征对于人脸根据记忆重建的干扰大于帮助。

0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3955次
    • 积分:158
    • 等级:
    • 排名:千里之外
    • 原创:12篇
    • 转载:2篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论