随机神经网络之模拟退火

在机器学习中,梯度下降法常用于优化,但易陷入局部最优。模拟退火是一种解决局部极小问题的有效方法,通过概率允许向高能状态转移,模拟金属退火过程。在退火过程中,网络权值随机变化,根据Boltzmann分布决定是否接受变化,以达到全局最优。本文详细介绍了模拟退火算法及其在网络优化中的应用。
摘要由CSDN通过智能技术生成

一、引言

    在机器学习以及优化组合问题中,最常用的方法就是梯度下降法。比如BP神经网络,多层感知器的神经元(units)越多,对应的权矩阵也就越大,每个权可视为一个自由度或者变量。我们知道自由度越高,变量越多,模型越复杂,模型的能力越强。但是模型能力越强,模型就越容易过拟合,对噪声太敏感。另一方面,使用梯度下降进行最优解搜寻时,多变量的误差曲面很像是连绵起伏的山峰一样,变量越多,山峰和山谷也越多,这就导致梯度下降法极容易陷入到局部的一个小山谷,而停止搜索。这就是常规的梯度下降法在解决多维度的优化问题中最常见的局部最优问题。究其原因是梯度下降法的搜索准则所致,按照梯度的负方向搜索,一味追求网络误差或能量函数的降低,使得搜索只具有“下山”的能力,而不具备“爬山”的能力。所谓“爬山”的能力,就是当搜索陷入局部最优时,还能具备一定的“翻山越岭”的能力,能够从局部最优中逃出来,继续搜索全局最优。如果为具有多个局部极小点的系统打一个形象的比喻。设想托盘上有一个凸凹不平的多维能量曲面,若在该曲面上放置一个小球,它在重力作用下,将滚入最邻近的一个低谷(局部最小点)而不能自拔。但该低谷不一定就是曲面上最低的那个低谷(全局最小点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhang_P_Y

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值