压缩感知及实验分析
摘要
压缩感知的主要内容有三个:信号x的稀疏表示;设计测量矩阵,在降维的同时,保证原始信号x的信息损失最小;设计信号恢复算法,利用降维后的观测值无失真地恢复原始信号x。根据压缩感知理论,基于Matlab平台,做了最简单的一维信号的压缩感知实验。
压缩感知原理
压缩感知的理论依据
<1> 如果信号x在某个正交基ψ上是k-稀疏的
说明:信号x可以通过正交基ψ分解得到对应的系数s,即x=ψ×s,系数s是k-稀疏的(指s中只含有k个非零值,或者只含有k个与众不同的值).
<2> 如果能找到一个与ψ不相关的观测基Φ(测量矩阵)
<3> 用观测基Φ观测x信号得到的观测值y:y=Φ×x
<4> 就可以利用最优化方法,从观测值y中高概率恢复x
最后,得到的压缩感知方程为:
y=Φ×x=Φ×ψ×s=Θ×s,Θ=Φ×ψ
其中,Θ被称为传感矩阵。由测量得到的y、选择的稀疏基ψ和观测基Φ,可以得到s的最优解s’,那么x的最优解x’就可以通过公式x’=ψ×s’计算出