最大熵模型总结

本文系统总结了最大熵模型,从熵的概念出发,探讨了物理学和信息论中的熵,包括联合熵、条件熵、相对熵和互信息。接着介绍了最大熵模型的基本思想和性质,通过实例展示了如何利用最大熵原理解决实际问题。最大熵模型在统计建模中扮演重要角色,尤其在处理不确定性时,遵循不添加主观假设的原则,以实现概率分布的最大不确定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最大熵模型总结

声明:引用请注明出处http://blog.csdn.net/lg1259156776/


摘要

本文对最大熵模型进行了系统性的学习和总结,从不同的角度来解读熵的概念以及最大熵的内涵。对最大熵的具体应用进行了梳理,并介绍了与最大熵相关的一些概念,最后通过一个简单的demo来对最大熵模型进行直观的认识和感悟。

引言

熵,忘了第一次接触是在物理课上还是在化学课上,总之是描述系统的无序性或者混乱状态,跟热力学第二定律的宏观方向性有关:在不加外力的情况下,总是往混乱状态改变;跟化学反应的方向性有关,总是往能量降低的方向改变。印象中,熵总是与能量与混乱状态联系在一起。最近读吴军的《数学之美》最大熵一章节,对于这个最大熵模型有了重新的认识,同时由于在近期的学术论文研究中需要借助最大熵进行决策,因此才促成此次对最大熵模型的总结。

统计建模方法是用来modeling随机过程行为的。在构造模型时,通常供我们使用的是随机过程的采样,也就是训练数据。这些样本所具有的知识(较少),事实上,不能完整地反映整个随机过程的状态。建模的目的,就是将这些不完整的知识转化成简洁但准确

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhang_P_Y

感谢支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值