Problem Description
Alice and Bob always love to play games, so does this time.
It is their favorite stone-taken game.
However, this time they does not compete but co-operate to finish this task.
Suppose there is a stack of n stones.
Each turn,
Alice can only take away stones in number pow of 2, say 1, 2, 4, 8, 16, ...
Bob can only take away stones in number pow of 3, say 1, 3, 9, 27, 81, ...
They takes stones alternately, and lady first.
Notice in each turn, Alice/Bob have to take away at least one stone, unless the stack is empty.
Now, the question is, what is the least number of operation for taking away all the stones.
Input
Multiple test cases. First line, there is an integer T ( 1 ≤ T ≤ 20 ), indicating the number of test cases.
For each test case, there is a number n ( 1 ≤ n ≤ 10000 ), occupying a line, indicating the total number of the stones.
Ouput
For each test case, output a line. It is an integer number k, indicating the least number of operation in need to finish the task.
Sample Input
5 1 2 3 4 5
Sample Output
1 1 2 1 2
dp[i][0]表示取i颗石子到Alice的最小步数
dp[i][1]表示取i颗石子到Bob的最小步数
dp[i][0]=min(dp[i-2^k][1])+1) 代表 alice 取一次,后得到的 bob取得最小数量加上刚才aclice取得1次,等于alice取得最小次数同理dp[i][1]=min(dp[i-3^k][0]+1)#include <stdio.h> #include <string.h> #include <algorithm> using namespace std; #define L 10001 #define inf 1<<30 int dp[L][2]; int main() { int n,t,i,j; dp[0][0] = dp[0][1] = 0; dp[1][0] = dp[1][1] = dp[2][0] = 1; dp[2][1] = 2; for(i = 3; i<L; i++) { dp[i][0] = dp[i][1] = inf; for(j = 1; j<=i; j*=2) dp[i][0] = min(dp[i][0],dp[i-j][1]+1); for(j = 1; j<=i; j*=3) dp[i][1] = min(dp[i][1],dp[i-j][0]+1); } scanf("%d",&t); while(t--) { scanf("%d",&n); printf("%d\n",dp[n][0]); } return 0; }
本文介绍了一个两人合作型石头游戏的算法解决方案,通过动态规划的方法计算出移除所有石头所需的最少操作次数。玩家Alice和Bob轮流从一堆石头中取走特定数量的石头,目标是最小化总的操作步骤。
1463

被折叠的 条评论
为什么被折叠?



