通过傅里叶变换方法求图像卷积-OpenCV实现

本文介绍了如何使用傅里叶变换方法进行图像卷积,通过OpenCV实现高效计算。讨论了卷积定理,指出两个函数的卷积可通过傅里叶变换的乘积求得。在实际操作中,由于OpenCV的filter2D函数计算的是相关而非卷积,因此需要先对核进行翻转以实现真正的卷积。文中提供了修改后的convolveDFT函数,并给出了处理图像的步骤,包括读取灰度图、创建平滑核、转换图像类型以及卷积结果的归一化显示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在图像处理中经常会遇到各种滤波(平滑、锐化)的情况,基本方法都是将图像与一个核进行卷积实现。而卷积定理指出,两个函数的卷积的傅里叶变换等于各自的傅里叶变换的乘积,即:

[1]

那么,两个函数的卷积可以通过如下方式得到,对两个函数傅里叶变换的乘积做傅里叶反变换,即:

[1]


在进行卷积运算时,一般是将核沿着图像从左到右从上到下计算每一个像素处与核卷积后的值,这样的计算量较大,采用傅里叶变换的方法可以提高运算效率。


#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>

using namespace cv;
using namespace std;

//http://docs.opencv.org/modules/core/doc/operations_on_arrays.html#dft[2]
void convolveDFT(Mat A, Mat B, Mat& C)
{
    // reallocate the output array if needed
    C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
    Size df
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值