RMQ区间最值问题

RMQ(Range Minimum/Maximum Query)问题是求区间最值问题。你当然可以写个O(n)的(怎么写都可以吧=_=),但是万一要询问最值1000000遍,估计你就要挂了。这时候你可以放心地写一个线段树(前提是不写错)应该不会挂。但是,这里有更简单的算法,就是ST算法,它可以做到O(nlogn)的预处理,O(1)地回答每个询问。
       来看一下ST算法是怎么实现的(以最大值为例):
      

       首先是预处理,用一个DP解决。设a[i]是要求区间最值的数列,f[i,j]表示从第i个数起连续2^j个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7 ,f[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。f[1,2]=5,f[1,3]=8,f[2,0]=2,f[2,1]=4……从这里可以看出f[i,0]其实就等于a[i]。这样,Dp的状态、初值都已经有了,剩下的就是状态转移方程。我们把f[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。f[i,j]就是这两段的最大值中的最大值。于是我们得到了动规方程F[i,j]=max(F[i,j-1],F[i+2^(j-i),j-1]).


for(i=1;i<=m;i++){
		for(j=1;j<=n;j++){
            t = j+(1<<(i-1));
			if(t<=n) mx[j][i]=max(mx[j][i-1],mx[t][i-1]);
			else mx[j][i]=mx[j][i-1];
		}
    }


    
接下来是得出最值,一个很好的办法,做到了O(1)。还是分开来。如在上例中我们要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。扩展到一般情况,就是把区间[l,r]分成两个长度为2^k的区间(保证有f[i,j]对应)。直接给出表达式:
k:=trunc(ln(r-l+1)/ln(2));

ans:=max(F[l,k],F[r-2^k+1,k]);


int m=floor(log((double)(r-l+1))/log(2.0));
    int a=max(mx[l][m],mx[r-(1<<m)+1][m]);

练习 pku3264

/*
pku3264
大意是给你一串数字,然后问你从第i个到第j个中最大的数减去最小的数的值
用rmq求出【i,j】中的最大最小值相减即可
rmq算法思想:
一,预处理
设a[i]是要求区间最值的数列,f[i,j]表示从第i个数起连续2^j个数中的最大值。
例如数列3 2 4 5 6 8 1 2 9 7 ,f[1,0]表示第1个数起,长度为2^0=1的最大值,其实就是3这个数。
f[1,2]=5,f[1,3]=8,f[2,0]=2,f[2,1]=4……从这里可以看出f[i,0]其实就等于a[i]。
这样,Dp的状态、初值都已经有了,剩下的就是状态转移方程。
我们把f[i,j]平均分成两段(因为f[i,j] 一定是偶数个数字),
从i到i+2^(j-1)-1为一段,i+2^(j-1)到i+2^j-1为一段(长度都为2^(j-1))。
用上例说明,当 i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。
f[i,j]就是这两段的最大值中的最大值。
于是我们得到了动规方程F[i,j]=max(F[i,j-1],F[i+2^(j-i),j-1]).
二,查询
如在上例中我们要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。扩展到一般情况,就是把区间[l,r]分成两个长度为2^k的区间(保证有f[i,j]对应)。直接给出表达式:
k:=trunc(ln(r-l+1)/ln(2));
ans:=max(F[l,k],F[r-2^k+1,k]);
*/
#include <iostream>
#include <math.h>
#define max(a,b) ((a>b)?a:b)
#define min(a,b) (a<b?a:b)

using namespace std;

const int maxn=50001;
int h[maxn];
int mx[maxn][16],mn[maxn][16];
int n,q;

void rmq_init()
{
	int i,j,t;
	for(j=1;j<=n;j++) mx[j][0]=mn[j][0]=h[j];
	int m=floor(log((double)n)/log(2.0));
	for(i=1;i<=m;i++){
		for(j=1;j<=n;j++){
            t = j+(1<<(i-1));
			if(t<=n) mx[j][i]=max(mx[j][i-1],mx[t][i-1]);
			else mx[j][i]=mx[j][i-1];
		}
    }
    for(i=1;i<=m;i++){
		for(j=1;j<=n;j++){
            t = j+(1<<(i-1));
			if(t<=n) mn[j][i]=min(mn[j][i-1],mn[t][i-1]);
			else mn[j][i]=mn[j][i-1];
		}
	}
}

int rmq(int l,int r)
{
	int m=floor(log((double)(r-l+1))/log(2.0));
    int a=max(mx[l][m],mx[r-(1<<m)+1][m]);
	int b=min(mn[l][m],mn[r-(1<<m)+1][m]);
    return a-b;  
}

int main()
{
	int i,l,r;
	scanf("%d%d",&n,&q);
	for(i=1;i<=n;i++) scanf("%d",&h[i]);
	rmq_init();
	for(i=0;i<q;i++){
		scanf("%d%d",&l,&r);
		printf("%d\n",rmq(l,r));
	}
	return 0;
}





  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值