RMQ求区间最值问题

RMQ(Range Minimum/Maximum Query)问题:
   RMQ问题是求给定区间中的最值问题。当然,最简单的算法是O(n)的,但是对于查询次数很多(设置多大100万次),O(n)的算法效率不够。可以用线段树将算法优化到O(logn)(在线段树中保存线段的最值)。不过,Sparse_Table算法才是最好的:它可以在O(nlogn)的预处理以后实现O(1)的查询效率。下面把Sparse Table算法分成预处理和查询两部分来说明(以求最小值为例)。
预处理:
    预处理使用DP的思想,f(i, j)表示[i, i+2^j - 1]区间中的最小值,我们可以开辟一个数组专门来保存f(i, j)的值。
例如,f(0, 0)表示[0,0]之间的最小值,就是num[0], f(0, 2)表示[0, 3]之间的最小值, f(2, 4)表示[2, 17]之间的最小值
注意, 因为f(i, j)可以由f(i, j - 1)和f(i+2^(j-1), j-1)导出, 而递推的初值(所有的f(i, 0) = i)都是已知的
所以我们可以采用自底向上的算法递推地给出所有符合条件的f(i, j)的值。

查询:
    假设要查询从m到n这一段的最小值, 那么我们先求出一个最大的k, 使得k满足2^k <(n - m + 1).
于是我们就可以把[m, n]分成两个(部分重叠的)长度为2^k的区间: [m, m+2^k-1], [n-2^k+1, n];
而我们之前已经求出了f(m, k)为[m, m+2^k-1]的最小值, f(n-2^k+1, k)为[n-2^k+1, n]的最小值
我们只要返回其中更小的那个, 就是我们想要的答案, 这个算法的时间复杂度是O(1)的.
例如, rmq(0, 11) = min(f(0, 3), f(4, 3))
由此我们要注意的是预处理f(i,j)中的j值只需要计算log(n+1)/log(2)即可,而i值我们也只需要计算到n-2^k+1即可。

 

以上信息转自网上, 总结下上面所诉:

(1).dp的状态转移方程为:

if(j == 0) dp[i][j] = 0;

else dp[i][j] = max(dp[i][j-1], dp[i+(1<<(j-1))][j-1]) //求最大值,最小值也一样

(2).给你一个区间[L, R], 怎么来求得该区间的最值(这里以求最大者举例).

先求出满足2^k<=(R-L+1)的最大的k值, 可以这样求k值: k = log(R-L+1.0)/log(2.0)

这样就可以把区间划分成两个长度为2^k的区间[L, L+2^k-1]和[R-2^k+1, R],

由于前面求的k值是满足2^k<=(R-L+1)条件的最大值, 所有可以证得L+2^k-1 >= R-2^k+1

dp[L][k] = max[L, L+2^k-1],  dp[R-(1<<k)+1][k] = max[R-2^k+1, R]

这样, 区间[L, R]的最大值ret = max(dp[L][k], dp[R-(1<<k)+1][k])

(3).解释"由此我们要注意的是预处理f(i,j)中的j值只需要计算log(n+1)/log(2)即可,而i值我们也只需要计算到n-2^k+1即可。"这句话。

* 求dp的整个过程中i的最大值为: maxi = max(L, R-2^k+1), 由2^k<=(R-L+1) -> L <= R-2^k+1, 所以对于i, 只需要计算到R-2^k+1即可.

* 同理可推出j的计算范围: log(R-L+1)/log(2)取得最大值为L=0时, 即: log(R+1)/log(2)

ps: 个人想法, 仅供参考!!!

 

练习:

poj 3264 Balanced Lineup

http://162.105.81.212/JudgeOnline/problem?id=3264

 

 

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值