RMQ(区间最值问题)详解

RMQ问题的三种解法

首先说一下什么是RMQ问题:
RMQ (Range Minimum/Maximum Query)问题是指:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在[i,j]里的最小(大)值,也就是说,RMQ问题是指求区间最值的问题
主要方法及复杂度(处理复杂度和查询复杂度)如下:
1.朴素(即搜索) O(n)-O(n)
2.线段树(segment tree) O(n)-O(logn)
3.ST(实质是动态规划) O(nlogn)-O(1)

题目描述
给定一个数字序列,查询任意给定区间内数字的最小值。

输入
输入包含多组测试用例,每组测试用例的开头为一个整数n(1<=n<=100000),代表数字序列的长度。
接下去一行给出n个数字,代表数字序列。数字在int范围内。
下一行为一个整数t(1<=t<=10000),代表查询的次数。
最后t行,每行给出一个查询,由两个整数表示l、r(1<=l<=r<=n)。

输出
对于每个查询,输出区间[l,r]内的最小值。

样例输入:
5
3 2 1 4 3
3
1 3
2 4
4 5
样例输出:
1
1
3

解法一:直接搜索


#include<cstdio>
#define MAX 100010
 
int Getmin(int A[],int L,int R)
{
	int min=0x7FFFFFFF;
	int i;
	for(i=L;i<=R;i++)
		if(A[i]<min)
			min=A[i];
	return min;
}
 
int main(int argc,char *argv[])
{
	int n;
	int A[MAX];
	int i,T,L,R;
	int ans;
	while(scanf("%d",&n)!=EOF)
	{
		for(i=1;i<=n;i++)
			scanf("%d",&A[i]);
		scanf("%d",&T);
		while(T--)
		{
			scanf("%d%d",&L,&R);
			ans=Getmin(A,L,R);
			printf("%d\n",ans);
		}
	}
 
	return 0;
}

结果,理所当然超时(其实只有最后一个case超时)。。。

解法二:线段树
线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b]。因此线段树是平衡二叉树,最后的子节点数目为N,即整个线段区间的长度。使用线段树可以快速的查找某一个节点在若干条线段中出现的次数,时间复杂度为O(logN)。而未优化的空间复杂度为2N,因此有时需要离散化让空间压缩。

AC代码:

#include<cstdio>
#include<cmath>
#include<algorithm>
#define MAX 100010
 
typedef struct Node
{
	int l,r;
	int min;
}Node;
 
Node N[MAX*3];
int A[MAX];
 
int fmin(int a,int b)
{
	return a<b?a:b;
}
 
void BuildTree(int left,int right,int u)
{
	N[u].l=left;
	N[u].r=right;
	if(left==right)
	{
		N[u].min=A[left];
	}
	else
	{
		BuildTree(left,(left+right)>>1,2*u);
		BuildTree(((left+right)>>1)+1,right,2*u+1);
		N[u].min=(int)fmin(N[2*u].min,N[2*u+1].min);
	}
}
 
int query(int left,int right,int u)
{
	if(N[u].l==left&&N[u].r==right)
		return N[u].min;
	if(right<=N[2*u].r)
		return query(left,right,2*u);
	if(left>=N[2*u+1].l)
		return query(left,right,2*u+1);
	int mid=(N[u].l+N[u].r)>>1;
	return (int)fmin(query(left,mid,2*u),query(mid+1,right,2*u+1));
}
 
int main(int argc,char *argv[])
{
	int i,n,ans;
	int T,L,R;
	while(scanf("%d",&n)!=EOF)
	{
		for(i=1;i<=n;i++)
			scanf("%d",&A[i]);
		BuildTree(1,n,1);
		scanf("%d",&T);
		while(T--)
		{
			scanf("%d%d",&L,&R);
			ans=query(L,R,1);
			printf("%d\n",ans);
		}
	}
 
	return 0;
}


解法三:动态规划(这是要介绍的重点)
下面来看一下本算法的原理:
首先是预处理,用一个DP解决。设a[i]是要求区间最值的数列,f[i,j]表示从第i个数起连续2^j 个数中的最大值。例如数列3 2 4 5 6 8 1 2 9 7 ,f[1,0]表示第1个数起,长度为2^0 =1的最大值,其实就是3这个数。f[1,2]=5,f[1,3]=8,f[2,0]=2,f[2,1]=4……从这里可以看出f[i,0]其实就等于a[i]。这样,Dp的状态、初值都已经有了,剩下的就是状态转移方程。我们把f[i,j]平均分成两段(因为f[i,j]一定是偶数个数字),从i到i+2^(j-1) -1为一段,i+2^(j-1) 到i+2^j -1为一段(长度都为2^(j-1))。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。f[i,j]就是这两段的最大值中的最大值。于是我们得到了动规方程F[i,j]=max(F[i,j-1],F[i+2^(j-1),j-1]).
接下来是得出最值,一个很好的办法,做到了O(1)。还是分开来。如在上例中我们要求区间[2,8]的最大值,就要把它分成[2,5]和[5,8]两个区间,因为这两个区间的最大值我们可以直接由f[2,2]和f[5,2]得到。扩展到一般情况,就是把区间[l,r]分成两个长度为2^k的区间(保证有f[i,j]对应)。直接给出表达式:
k:=(int)(log(r-l+1)/log(2));
ans:=max(F[l,k],F[r-2^k+1,k]);
AC代码:

#include<cstdio>
#include<cmath>
#include<algorithm>
 
#define MAXN 100010
 
using namespace std;
int dp[MAXN][40];
 
void RMQ(int A[],int n)
{
	int i,j;
	for(i=1;i<=n;i++)
		dp[i][0]=A[i];
	for(j=1;j<=(int)(log(n*1.0)/log(2.0));j++)
		for(i=1;i+(1<<j)-1<=n;i++)
			dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
 
int query(int L,int R)
{
	int k=(int)((log(R-L+1)*1.0)/log(2.0));
	return min(dp[L][k],dp[R-(1<<k)+1][k]);
}
 
int main(int argc,char *argv[])
{
	int i,n,ans;
	int A[MAXN];
	int T,L,R;
	while(scanf("%d",&n)!=EOF)
	{
		for(i=1;i<=n;i++)
			scanf("%d",&A[i]);
		RMQ(A,n);
		scanf("%d",&T);
		while(T--)
		{
			scanf("%d%d",&L,&R);
			ans=query(L,R);
			printf("%d\n",ans);
		}
	}
 
	return 0;
}


很明显,三个算法中,动态规划算法最优,线段树次之,直接搜索效率最低。当然这不是绝对的,算法效率越高,其编写的复杂度也越大,那些既容易理解又容易编写的算法实在太少了。

转自:
作者:烟蓑雨笠
原文:https://blog.csdn.net/cstopcoder/article/details/18939483
版权声明:本文为博主原创文章,转载请附上博文链接!

  • 6
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这个问题可以使用数据结构「单调栈」来解决。 具体地,考虑对于每个位置 $i$,维护一个最小值 $a_{\mathrm{min}}$ 表示以 $i$ 为右端点的最小的左端点。那么,给定一个左端点 $L$,最小的右端点 $R$ 即为 $a_{\mathrm{min}}$。这样的子区间数即为 $R-L+1$。 如何维护这个最小值呢?我们可以使用一个单调栈。具体地,从左到右扫描每个位置 $i$,如果栈顶元素 $j$ 对应的值 $a_j$ 大于等于 $a_i$,则 $j$ 出栈。这时,由于 $j$ 左边的元素都比 $a_j$ 大,而 $a_i$ 又比 $a_j$ 小,因此 $a_j$ 左边的最小值即为 $j+1$。于是我们可以更新 $a_{\mathrm{min}}$ 并将 $i$ 入栈。最后,每个位置的答案即为 $a_{\mathrm{min}}$ 到该位置的距离。 时间复杂度 $O(n)$。 ### 回答2: 要获取给定元素为区间最小值的子区间数,需要遍历所有可能的子区间,然后判断每个子区间的最小值是否等于给定的元素。 具体实现步骤如下: 1. 声明一个计数器变量,用于记录满足条件的子区间数,初始化为0。 2. 使用嵌套循环遍历所有可能的子区间。外层循环控制子区间的起始位置,内层循环控制子区间的结束位置。 3. 在每个子区间中,找到最小值。可以使用一个变量来记录当前子区间的最小值,初始化为第一个元素。然后遍历该子区间的所有元素,将较小的值更新为当前的最小值。 4. 在内层循环中,判断当前子区间的最小值是否等于给定的元素。如果相等,则计数器变量加1。 5. 完成嵌套循环后,计数器变量的值就是满足条件的子区间数。返回计数器的值。 这样,我们就可以通过遍历所有子区间并判断其最小值,来获取给定元素为区间最小值的子区间数。 ### 回答3: 要获取给定元素为区间最小值的子区间数,需要使用一个遍历的方法来比较每个子区间的元素值。 首先,定义一个计数器变量count,初值为0,用于记录满足条件的子区间数。 然后,使用两层循环遍历所有可能的子区间。 外层循环用于确定子区间的起始位置,从0遍历到数组长度减一。 内层循环用于确定子区间的结束位置,从外层循环的起始位置遍历到数组长度减一。 在内层循环中,通过比较每个子区间的元素值,找到区间最小值。 如果最小值与给定元素相等,则将计数器count加1。 最后,返回计数器count的值,即为给定元素为区间最小值的子区间数。 以下是一个示例代码: ``` def getSubarrayCount(arr, target): count = 0 n = len(arr) for i in range(n): for j in range(i, n): min_val = float('inf') for k in range(i, j+1): min_val = min(min_val, arr[k]) if min_val == target: count += 1 return count # 示例输入 arr = [1, 3, 2, 2, 1] target = 1 # 调用函数 result = getSubarrayCount(arr, target) print("给定元素为区间最小值的子区间数:", result) ``` 上述代码中,arr是输入的数组,target是给定的元素。返回的result即为给定元素为区间最小值的子区间数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值