主席树/函数式线段树/可持久化线段树

【前言】

主席树、函数式线段树、可持久化线段树
这三者其实是一个东西……
它的作用十分显然,就是访问线段树的历史版本……

【实现】

假设我们要对线段树进行Q次插入操作,如何(随机)访问第i次操作后的线段树?

我们当然可以对每个状态都造一棵完整的线段树,但是显然会MLE啊,怎么办?
观察可以发现,线段树的插入操作每次只会更新logN个节点,其他节点都不会变
于是我们可以利用前一次操作的状态,避免重复构造不变节点。
如何实现对不变节点的利用呢?看下图:
这里写图片描述
新的节点“依附”在旧的线段树上,并与旧的线段树共用一些子树
(看这图需要有一点空间想象力)
另外,主席树有一个很有用的性质就是每棵线段树的形态都是一样的,所以可以对每个对应节点相加减(这样就可以容斥啦)

【应用】

可持久化线段树有什么用呢?一般用于基于序列的名次操作(离线)。
说个最简单的,给定一个序列,每次询问区间[L,R]中第k大的数。
首先考虑线段树表示的是什么,我们定义线段[L,R]表示所有满足L<=a[i]<=R的个数(注意不要和上面的区间[L,R]搞混)。
那么思考如下过程:从1至n,一个一个对线段树插入a[i]。
这样就可以构造出主席树。其中第i棵线段树(第i个历史版本)rot[i]的节点[L,R]的权值表示[1,i]这个子区间的所有满足L<=a[i]<=R的个数。
询问与BST的Rank操作类似,考虑在rot[i]中找第K大的数,如果左子树的权值大于等于K,说明第k大的在左边,否则在右边,并修改K的值。这样询问rot[R]和rot[L-

### 可持久化线段树的封装方法与实现 #### 1. 封装的意义 通过封装,可以控制对数据的访问权限。例如,某些数据只能被特定的方法修改,而不能被外部直接修改[^3]。对于复杂的数据结构可持久化线段树而言,良好的封装能够简化其使用方式并减少误用的可能性。 #### 2. 基本概念介绍 可持久化线段树是一种允许查询历史版本状态的数据结构变种。相比于传统线段树每次更新都会改变整棵的状态,可持久化版本能够在不破坏旧有节点的情况下完成新版本构建,从而支持时间回溯等功能。 #### 3. Python 中的具体实现案例 下面给出一段基于Python语言编写的简单版可持久化线段树类定义及其部分核心函数: ```python class PersistentSegmentTree: def __init__(self, size): self.size = size self.tree = [0] * (4 * size) def update(self, idx, val, root=1, start=0, end=None, version=-1): """ 更新指定位置上的值,并返回新的根节点索引 """ if not end: end = self.size - 1 new_root = len(self.tree) self.tree.extend([None]*new_root) # 扩展数组长度以容纳新增加的结点 old_val = self._query(idx, root, start, end)[version][idx] if start == end: self.tree[new_root] = val return new_root mid = (start + end)//2 left_child = right_child = None if idx <= mid: left_child = self.update(idx, val, 2*root, start, mid, version+1) right_child = 2*root+1 else: left_child = 2*root right_child = self.update(idx, val, 2*root+1, mid+1, end, version+1) current_version = list(self.tree[root]) current_version[idx] += val-old_val self.tree[new_root] = tuple(current_version) return new_root def query_sum(self, l, r, root=1, start=0, end=None, version=-1): """ 查询区间[l,r]内元素之和 """ if not end: end = self.size - 1 result = sum(self._query(i, root, start, end)[version][i] for i in range(l, min(r+1,end+1))) while True: next_start = max(start, l) next_end = min(end, r) if next_start > next_end or next_start >= self.size or next_end < 0: break result += self.tree[root][(next_start-next_end)%len(self.tree[root])] if next_start % 2 != 0 and next_end % 2 == 0: pass elif next_start % 2 == 0 and next_end % 2 != 0: pass else: root //= 2 start //= 2 end //= 2 return result def _query(self, pos, node_index, seg_left, seg_right, versions=[]): """ 辅助函数用于获取某一点在不同版本下的取值情况""" if seg_left==seg_right: return [(node_index,)] if isinstance(versions,int) else ([tuple(x) for x in zip(*[(v,)for v in versions])]) mid=(seg_left+seg_right)//2 res=[[]for _ in range(len(versions)+1)] if pos<=mid: q=self._query(pos,node_index<<1|0,seg_left,mid,[versions[i]+[node_index]if type(versions)==list else []for i in range(len(res))]) for i in range(len(q)): res[i].extend(q[i]) else: q=self._query(pos,(node_index<<1)|1,mid+1,seg_right,[versions[i]+[node_index]if type(versions)==list else []for i in range(len(res))]) for i in range(len(q)): res[i].extend(q[i]) return res[:-1] ``` 请注意上述代码仅为示意性质,实际应用时还需要考虑更多边界条件以及性能优化等问题。此外,该例子主要展示了如何利用列表模拟多叉存储机制来达到“持久化”的效果;而在真实场景下可能会采用更高效的方式来进行内存管理。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值