数论零散知识
文章平均质量分 57
linkfqy
A link to FQY.
展开
-
斐波那契数列的性质
斐波那契(Fibonacci)数列: fi=⎧⎩⎨01fi−1+fi−2i=0i=1i≥2 f_i = \begin{cases} 0 & \text{i=0} \\ 1 & \text{i=1} \\ f_{i-1}+f_{i-2} & \text{i≥2} \end{cases} 这个东西貌似是一种很神奇的存在…… 这里列举一些性质: 1.f1+f2+……+fn=fn+2−1f原创 2017-06-28 20:39:34 · 2823 阅读 · 5 评论 -
同余及其性质
把数论里的一些零散的知识总结一下……【同余】a模b,即a除以b的余数,记做”a mod b”或”a%b”。 同余,用符号≡表示,若a%m=b%m则称a与b关于m同余,记做”a≡b (mod m)” 本文中,a与b的最大公约数记为(a,b),最小公倍数记为[a,b],a能整除b记为a|b【同余的几个性质】性质1:a≡a(mod m),(反身性) 性质2:若a≡b(mod m),那么b≡a(mod原创 2017-02-17 10:42:26 · 4894 阅读 · 1 评论 -
浅谈逆元
【逆元的定义】对于任意正整数a,m,若ax≡1 (mod m),则这个关于x的同余方程的最小正整数解x为“a模m的逆元”。【逆元的应用】常常会遇到这种题目:题目中运算的数据比较大,为了避免使用高精度,会要求选手输出答案mod p的结果,一般p是大小合适的质数。这样就可以利用同余的原理,使得每次运算结果都小于p,避免了高精度的使用。 显然,上述方法对于+、-、*运算还是比较方便的,但是如果需要用到原创 2017-02-17 10:51:24 · 594 阅读 · 0 评论 -
欧拉函数
【欧拉函数】欧拉函数是数论中十分基础的一个函数,其意为:对于一个正整数n,小于n的与n互质的数的个数为n的欧拉函数,记作φ(n)或phi(n)。 另外,小于n的与n互质的所有数构成的集合Zn=为模n的简化剩余系。【欧拉函数的性质】欧拉函数是积性函数:对于互质的两个正整数n,m有φ(nm)= φ(n)* φ(m) 显然,对于一个质数p,有φ(p)=p-1【通项公式】根据以上两个性质,我们可以推导出原创 2017-02-17 10:58:43 · 860 阅读 · 1 评论 -
欧拉定理
总结写在Word上…… Word里面的公式不能搞到csdn上,只能以图片的形式,大家将就着看……原创 2017-02-17 11:03:14 · 705 阅读 · 0 评论 -
欧几里得算法及其扩展形式
【欧几里得算法】欧几里得算法(Euclid’s algorithm),又称辗转相除法。由欧几里得在大约两千多年前提出,该算法能够快速求得正整数a,b的最大公约数gcd(a,b)。 本文仅讨论非负数情况下的问题。【算法描述】我们一般以递归形式实现欧几里得算法:int gcd(intx,int y){ if (!y) return x; return gcd(y,x%y); }【证明】原创 2017-02-17 11:10:27 · 837 阅读 · 0 评论