seh_sjlj
码龄5年
关注
提问 私信
  • 博客:714,641
    社区:590
    问答:4,324
    动态:371
    719,926
    总访问量
  • 131
    原创
  • 17,553
    排名
  • 659
    粉丝
  • 51
    铁粉

个人简介:一个热爱数学证明的大学牲

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2020-04-07
博客简介:

qaqwqaqwq的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    6
    当前总分
    2,778
    当月
    40
个人成就
  • 获得1,530次点赞
  • 内容获得265次评论
  • 获得4,242次收藏
  • 代码片获得5,074次分享
创作历程
  • 6篇
    2024年
  • 29篇
    2023年
  • 59篇
    2022年
  • 18篇
    2021年
  • 20篇
    2020年
成就勋章
TA的专栏
  • 计算理论
    16篇
  • 计算机视觉
    7篇
  • 概率论
    11篇
  • 高等数学
    19篇
  • 复变函数
    3篇
  • 机器学习
    5篇
  • 线性代数
    10篇
  • 数据结构与算法
    12篇
  • 笔记
    1篇
  • 离散数学
    5篇
  • 人工智能的现代方法I
    8篇
  • 博弈论
    1篇
  • 数电
    1篇
  • 英语
    1篇
  • html
    1篇
  • cmd
    1篇
  • AutoGround
    1篇
  • python
    7篇
  • Python for C API
    1篇
  • JavaScript
    2篇
  • C/C++
    19篇
  • OI
    16篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

185人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

关于以下Assetion failed错误的观察:../aten/src/ATen/native/cuda/IndexKernel.cu:92: operator(): block: ...

../aten/src/ATen/native/cuda/IndexKernel.cu:92: operator(): block: [0,0,0], thread: [15,0,0] Assertion `index >= -sizes[i] && index < sizes[i] && "index out of bounds"` failed.RuntimeError: CUDA error: CUBLAS_STATUS_EXECUTION_FAILED when calling `cublasS
原创
发布博客 2024.09.03 ·
504 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

【计算机视觉】四篇基于Gaussian Splatting的SLAM论文对比

本文对比四篇论文:Gaussian Splatting SLAM、SplaTAM、Gaussian-SLAM和GS-SLAM的异同点。
原创
发布博客 2024.03.31 ·
2816 阅读 ·
24 点赞 ·
0 评论 ·
44 收藏

【计算机视觉】Gaussian Splatting源码解读补充(三)

Gaussian Splatting源码解读补充的第三部分,包括反向传播。
原创
发布博客 2024.03.23 ·
4929 阅读 ·
47 点赞 ·
20 评论 ·
72 收藏

【计算机视觉】Gaussian Splatting源码解读补充(二)

Gaussian Splatting源码解读补充的第二部分,包括相机、CUDA基础知识和前向传播等。
原创
发布博客 2024.03.20 ·
7275 阅读 ·
73 点赞 ·
20 评论 ·
85 收藏

【计算机视觉】Gaussian Splatting源码解读补充(一)

本文基于@gwpscut的文章《学习笔记之——3D Gaussian Splatting源码解读》,对Gaussian Splatting的代码进行了更加详细的解读。本文是第一部分,包括球谐的简介和高斯场景GaussianModel类的解读。
原创
发布博客 2024.03.19 ·
8632 阅读 ·
50 点赞 ·
12 评论 ·
114 收藏

【计算复杂性理论】证明复杂性(九):命题鸽巢原理的指数级归结下界——更简短的证明

定义宽子句为含有至少n21010n2​个文字(即变量)的子句,也就是包含了至少总变量个数的(大约)110101​的子句。例如,当n5n=5n5时,子句P12∨P13∨P14P12​∨P13​∨P14​就是包含了3521031052​个变量的宽子句。为什么选择分母为101010呢?我们待会会看到其原因。定理对于充分大的nnn,任何对PHPnn−1PHPnn−1​的归结证明的大小都至少为2。
原创
发布博客 2024.03.02 ·
769 阅读 ·
23 点赞 ·
0 评论 ·
28 收藏

【计算机视觉】对极几何

在上一篇文章中我们介绍了在两个照相机像平面共面的情况下如何计算深度:深度与景物在图片中的位移成反比。这篇文章我们讨论更一般的情形,像平面不必共面,甚至不必平行。假设两个相机的内参(intrinsics)都是标定(calibrate)过的。
原创
发布博客 2023.10.29 ·
1138 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

【计算机视觉】3D视觉

我们需要考虑三个坐标系:1. 世界坐标系;2. 相机坐标系;3. 图像坐标系。
原创
发布博客 2023.10.29 ·
973 阅读 ·
3 点赞 ·
1 评论 ·
3 收藏

【计算机视觉】相机

想要拍一张相片,直接拿胶片对着景物肯定是不行的,因为物体的每一点发出的光线都会到达胶片上的每一点,从而导致胶片上的影像非常模糊,甚至什么都看不出来。因此,我们想建立景物和胶片一一对应的关系,就必须让景物的每一点只有一束光线到达胶片上的一点(其实是很小的区域)。为了达到这个目的,我们就必须用一个隔板把其他多余的光挡住(图中的barrier),只允许其中一束光通过,也就是隔板上的孔(aperture)。
原创
发布博客 2023.10.28 ·
1846 阅读 ·
7 点赞 ·
0 评论 ·
0 收藏

【线性代数/机器学习】矩阵的奇异值与奇异值分解(SVD)

上面介绍了奇异值,下面介绍如何利用奇异值对矩阵进行分解。设AAA是一个m×nm\times nm×n矩阵,σ1≥σ2≥⋯≥σn≥0σ1​≥σ2​≥⋯≥σn​≥0是它的奇异值。令rrr为AAA的秩,也就是AAA非零奇异值的个数。定义5AAAAUΣVTAUΣVT其中UUU是一个m×mm\times mm×m正交矩阵;VVV是一个n×nn\times nn×n正交矩阵;Σ。
原创
发布博客 2023.09.01 ·
1929 阅读 ·
1 点赞 ·
0 评论 ·
13 收藏

【计算复杂性理论】证明复杂性(八):命题鸽巢原理(Propositional Pigeonhole Principle)的指数级归结下界

1985年,Haken的论文证明了归结证明系统在命题鸽巢原理上有指数级下界,即命题鸽巢原理不存在多项式大小的归结证明。这项发现说明了归结的强度非常弱,而且因为DPLL、CDCL算法对应的证明系统不强于归结,这也说明了DPLL、CDCL算法的时间复杂度是指数级别的。
原创
发布博客 2023.07.30 ·
608 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

【计算复杂性理论】证明复杂性(七):有界算术(Bounded Arithmetic)与IΔ₀理论

证明系统与一阶理论的关系让我们能够为一系列永真式构造出短证明,并且让我们方便地探究证明系统之间多项式模拟的关系。给定一个在所有有限结构中有效的一阶语句$B$,我们可以定义一个永真式序列${\langle B\rangle}_n$,它表达的是“$B$在所有大小为$n$的结构中成立”。当我们想要构造这种永真式的短证明时,一个自然的想法是首先在某个一阶理论中证明$B$在所有有限结构中成立,然后把这种总的证明翻译成对单独的永真式${\langle B\rangle}_n$的命题证明。一阶理论越简单,命题证明系统需要
原创
发布博客 2023.07.26 ·
399 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【计算复杂性理论】证明复杂性(六):其他证明系统简介

本文介绍布尔程序弗雷格系统、等式演算、零点定理、分割平面、隐式证明系统、OBDD证明系统和作为一种证明系统的皮亚诺算术。
原创
发布博客 2023.07.25 ·
282 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【计算复杂性理论】证明复杂性(五):量化命题演算(Quantified Propositional Calculus)

量化命题演算的特点就是引入了命题量词。设$\boldsymbol{p}$是一个变量元组,$\alpha$是以$\boldsymbol{p}$和$x$为变量的命题公式,则定义$\forall x\alpha(\boldsymbol{p},x)$为$\alpha(\boldsymbol{p},0)\land\alpha(\boldsymbol{p},1)$,定义$\exists x\alpha(\boldsymbol{p},x)$为$\alpha(\boldsymbol{p},0)\lor\alpha(\bol
原创
发布博客 2023.07.25 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【计算复杂性理论】证明复杂性(四):相继式演算(Sequent Calculus)

一阶逻辑的相继式演算是由根岑提出来的。我们将会看到其命题逻辑的部分多项式等价于弗雷格系统。不像某些弗雷格系统,相继式演算是非常优雅的,它有优美的、简洁的、对称的推理规则。这种规则的清晰性允许我们对演算中的推导过程进行深度的证明论分析。根岑本人用它对谓词演算和算术理论进行了深入的研究。
原创
发布博客 2023.07.24 ·
527 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

【计算复杂性理论】证明复杂性(三):弗雷格(Frege)与扩展弗雷格(Extended Frege)证明系统

“弗雷格系统”这个术语是由Cook和Reckhow[2]提出的,不过在数理逻辑中它一般被称作希尔伯特风格的演算(Hilbert-style calculi)。设LLL是命题逻辑的一个有限且完备的语言。也就是说,LLL包含由某些布尔函数定义的有限个连接词(可能包含零元连接词,即常数000和111),并且具有任何变量个数的任何布尔函数都可以由LLL组成的公式定义(这称为LLL的完备性)。一个著名的例子是德·摩根
原创
发布博客 2023.07.11 ·
515 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【计算复杂性理论】证明复杂性(二):归结(Resolution)与扩展归结(Extended Resolution)证明系统

为了方便表示文字lll及其否定,我们定义lεlε1¬lε0lεl¬l​ε1ε0​。当lll被赋值为εε时,lε1lε1。在演算式证明系统中,证明是由证明步骤(proof steps)(也叫证明行,proof lines)组成的。证明的每个步骤可能是一个公式,一系列公式或具有某种形式的公式,具体取决于演算的规则。定义kπkπ为证明π\piπ的步骤数(行数);证明系统PPP中永真式α\alphaα最短证明的步骤数记作kP。
原创
发布博客 2023.07.07 ·
721 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【计算复杂性理论】证明复杂性(Proof Complexity)(一):简介

我们知道,勾股定理有超过350种证明。[1]上中学的时候,我们只需要能给出一个证明就可以了;但是怎么衡量证明的好坏呢?一般来讲,我们倾向于认为简洁的、优雅的证明是好的。那这个又怎么体现呢?我们可以用证明的长度来衡量它的简洁程度。写出来最短的证明就是最简洁的,而简洁的证明一般更容易理解,因此也是最好的。但是,即使是同一种证明,每个人写出来的长度也可能有所不同。那么怎么能让同一种证明有一种固定的写法呢?这就是证明论(Proof Theory)要研究的内容了。
原创
发布博客 2023.07.01 ·
674 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

【复变函数笔记】傅里叶变换和拉普拉斯变换

傅里叶积分定理若ftf(t)ft在−∞∞−∞∞上满足下列条件:(1)ftf(t)ft在任一有限区间上满足狄利克雷条件(连续或只有有限个第一类间断点;只有有限个极值点);(2)ftf(t)ft在无限区间−∞∞−∞∞上绝对可积(即积分∫−∞∞∣ft∣dt∫−∞∞​∣ft∣dt收敛),则有ft12π∫−∞∞∫−∞∞fτe−iωτdτeiωtdωft2π。
原创
发布博客 2023.06.06 ·
4850 阅读 ·
6 点赞 ·
0 评论 ·
43 收藏

【复变函数笔记】洛朗级数、留数及其应用

定理 设f(z)f(z)f(z)为区域DDD内的解析函数,z0∈Dz_0\in Dz0​∈D,ddd为z0z_0z0​到DDD的边界上各点的最短距离,则当∣z−z0∣
原创
发布博客 2023.06.06 ·
5319 阅读 ·
14 点赞 ·
1 评论 ·
69 收藏
加载更多