斯坦福大学机器学习——高斯判别分析

原创 2014年09月04日 16:01:56

同朴素贝叶斯一样,高斯判别分析(Gaussian discriminant analysismodel, GDA)也是一种生成学习算法,在该模型中,我们假设y给定的情况下,x服从混合正态分布。通过训练确定参数,新样本通过已建立的模型计算出隶属不同类的概率,选取概率最大为样本所属的类。

一、混合正态分布(multivariate normal distribution)

混合正态分布也称混合高斯分布。该分布的期望和协方差为多元的:期望,协方差,协方差具有对称性和正定性。混合高斯分布:,它的的概率密度函数为:

其中,为混合高斯分布的期望为其协方差表示协方差的行列式。

下面用图形直观的看一下二维高斯分布的性质:

以上三个图形的期望都为:,最左端图形的协方差,中间的,最右端的,我们可以看出:当变小时,图像变得更加“瘦长”,而当增大时,图像变得更加“扁平”。

再看看更多的例子:


以上三个图形的期望都为:,从左至右三个图形的协方差分别的:

可以看到随着矩阵的逆对角线数值增加,图形延方向,即底部坐标45度角压缩。图形在这个方向更加“扁”。


以上三幅图分别是以上图形的等高线,可以更直观的看到调整逆对角线的数值对图像的压缩程度。

以上三幅图保持协方差不变,期望的值分别为

可以看出,随着期望的改变,图形在平面上平移,而其他特性保持不变。

二、高斯判别分析模型

如果特征值x是连续的随机变量,我们可以使用高斯判别分析模型完成特征值的分类。为了简化模型,假设特征值为二分类,分类结果服从0-1分布。(如果为多分类,分类结果就服从二项分布)

模型基于这样的假设:

他们的概率(密度)函数分别为:



模型的待估计参数为,通常模型有两个不同的期望,而有一个相同的协方差。

该模型的极大似然对数方程为:

                                                                                         

                                                        

                                                        

求解该极大似然方程得:




在对计算完成之后,将新的样本x带入进建立好的模型中,计算出,选取概率更大的结果为正确的分类。

三、GDA和logistic回归

GDA模型和logistic回归模型存在这样有趣的关系:假如我们将视作关于x的函数,该函数可以表示成logistic回归形式:


其中,可以用以为变量的函数表示。

前文中已经提到,如果为混合高斯分布,那么,就可以表示成logistic回归函数形式;相反,如果可表示成logistic回归函数形式,并不代表服从混合高斯分布。这意味着GDA比logistic回归需要更加严格的模型假设,当然,如果混合高斯模型的假设是正确的,那么,GDA具有更高的拟合度。基于以上原因,在实践中使用logistic回归比使用GDA更普遍。



相关文章推荐

机器学习基础(林軒田)笔记之一

本文为林軒田老师的机器学习基础课程第一堂课的课程笔记,介绍什么是机器学习,机器学习的应用等...

斯坦福机器学习实现与分析之五(高斯判别分析)

斯坦福机器学习实现与分析之五(高斯判别分析) http://www.cnblogs.com/jcchen1987/p/4424436.html 高斯判别分析(GDA)简介   首...

斯坦福机器学习: 网易公开课系列笔记(五)——高斯判别分析、朴素贝叶斯

高斯判别分析(Gaussian discriminant analysis) 判别模型和生成模型       前面我们介绍了Logistic回归,通过学习hΘ(x)来对数据的分类进行预测...

斯坦福机器学习笔记1:GDA高斯判别分析算法的原理及matlab程序实现

用matlab实现matlab原理编程

机器学习第四篇(stanford大学公开课学习笔记) —生成型学习算法之高斯判别分析模型和朴素贝叶斯方法

一、生成型学习算法(Generative Learning Algorithms) 和

【机器学习-斯坦福】学习笔记19——线性判别分析(Linear Discriminant Analysis)(二)

4. 实例       将3维空间上的球体样本点投影到二维上,W1相比W2能够获得更好的分离效果。              PCA与LDA的降维对比:              PCA选择...

【机器学习-斯坦福】学习笔记18——线性判别分析(Linear Discriminant Analysis)(一)

1. 问题      之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但...

Stanford机器学习课程笔记2-高斯判别分析与朴素贝叶斯

转载请注明出处: http://xiahouzuoxin.github.io/notes/判别学习算法和生成学习算法高斯判别分析(Gaussian Discriminant Analysis)朴素贝叶...

<机器学习练习>高斯判别分析GDA

解释:高斯分界面的等式成立可以这样理解:对于任意一点x,其出现在y=0和y=1的两类概率相等。clear; clc %%随机生成一组高斯数据 mu1=[2,2,3]; sigma=[1,0,0;0,2...

(斯坦福机器学习课程笔记)混合高斯模型,朴素贝叶斯,混合朴素贝叶斯模型,因子分析

==============================混合高斯模型========================== 混合高斯模型是一个无监督的聚类算法,他认为各个类别的样本都分别服从高斯分...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:斯坦福大学机器学习——高斯判别分析
举报原因:
原因补充:

(最多只允许输入30个字)