关闭

重拾算法(一):算法效率分析(空间复杂度和时间复杂度)

标签: 算法
1041人阅读 评论(0) 收藏 举报
分类:

前言:


算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。

时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再关注一个算法的空间复杂度。



空间复杂度:


程序所需要的空间主要由以下部分构成:
  指令空间。存储经过编译之后的程序指令。指令有操作数和操作码构成。
  数据空间。存储所有常量和所有变量值所需的空间。
  环境栈空间。保存函数调用返回时恢复运行所需要的信
息。 


(1)指令空间
程序所需指令空间的大小取决于如下因素:
  把程序编译成机器代码的编译器。所使用的编译器不同,
则产生的机器代码长度就会有所差异。
  编译时实际采用的编译器选项。 有些编译器带有选项, 如
优化模式、 覆盖模式等等。 所取的选项不同, 产生的机器
代码也会不同。
  目标计算机。 目标计算机的配置也会影响代码的规模。 例
如, 如果计算机具有浮点处理硬件, 那么, 每个浮点操作
可以转化为一条机器指令。 否则, 必须生成仿真的浮点计
算代码,使整个机器代码加长。
(2)数据空间
分成两部分:存储常量和简单变量;存储复合变量。
  存储常量和简单变量。 取决于所用的计算机和编译器, 以
及变量与常量的数目。
  存储复合变量。 包括数据结构所需的空间及动态分配的空
间。
(3)环境栈空间
调用一个函数时,下面数据保存在环境栈中:
  返回地址。
  所有局部变量的值、传值形式参数的参数值。
  所有引用参数的定义。
所以一个程序所需要的空间可分为两部分:
① 固定部分。独立于实例特征,主要包括指令空间、简单变
量以及定长复合变量占用的空间、常量占用的空间。
② 可变部分。 主要包括复合变量所需空间、 动态分配的空间、
递归栈所需要的空间。
  复合变量所需的空间依赖于所解决的具体问题。
  动态分配的空间和递归栈所需要的空间依赖于实例特征


例:template <class T> //
int Find( const T a[], int n, const T&x)
{   int i ;
for(i = 0; i<n&& a[i] != x; ++i){}
return(i== n) ? -1: i ;

问题。在a[0..(n-1)]中搜索x,
若找到则回所在的位置,否
则返回-1。
  实例特征。 采用数组的长度n
作为实例特征。
  分析。数组地址a需要4字节,参数x需要4字节,n需要4
字节,局部变量i需要4字节,整数常量-1需要4字节,总
共需要20字节,独立于n,所以 =
Find
( ) 0 S n 。
  注意。数组a所需要的空间是在其他函数中分配的,不能
算作函数Find所需要的空间。

我们在此说明算法的时间复杂度的计算方法:
在说明之前,我先讲几个概念:


1.输入规模:


在大多数的算法中,对于输入规模较大的算法,一般运行需要的时间久更长。例如:对于一组数据进行排序,你输入 10 个数跟你输入10000个数的算法运行时间是不一样的。所以在研究算法的效率时,把它作为一个以算法输入规模n为参数的函数是非常合乎逻辑的。但是要注意的是,并不是输入了多少数据,数据规模就是多少。输入规模是需要进行选取的。比如:对于两个n*n 的矩阵,你所写的算法的输入规模可以选取为n ,也可以选取为n*n。对于大多数的情况下,选取什么作为参数都是可以看出来的(经验有了,水到渠成)。比如:对于排序,查找等算法的输入规模一般都选取它们的输入数据量n,对于n次多项式来说,它的参数就是多项式的系数。


2.算法的运行时间度量:


算法的运行时间,你第一时间看到这个可能会以为算法的运行时间肯定会以秒,分钟,甚至小时等时间的标准度来表示。但是这样的表示方式存在有很大的问题:这种方式很是依赖计算机的运行速度,依赖于算法程序实现的质量已经你选用的编译器等等。而且这种方式会导致程序的运行时间难以计算,我们必须用一种不依赖与任何无关因素的度量标准:基本操作。也被称为算法中最重要的操作。比如:对两种排序算法,我们没有办法计算出程序运行了多少时间,但是我们可以根据计算来得到每个程序的基本操作所出现的次数:加减,赋值等等。基本操作可能会有很多种,但是我们只需要找出来贡献最大的那个就行了。对于数学问题的算法:最消耗时间的是除法,其次是乘法,最后是加法和减法。


3.增长次数:


就是当n变大时,即输入规模变大时,对算法的时间复杂度相关函数的相关影响。





4.算法的平均.最差.和最优效率:


算法的最差效率:当输入规模为n时,算法在最坏情况下的效率。

算法的最优效率:当输入规模为n时,算法在最优的情况下的效率。

算法的平均效率:在实际的假设情况下,算法所可能发生的正推推断下所具有的效率。一般是通过得到或者是假设各类输入的概率分布,以推导出我们所希望                                 的基本操作次数。

以顺序查找算法为例:

算法的最差效率:n个数据,在最后一次判断才找到。效率为n。

算法的最优效率:n个数据,第一次就判断就招到,效率为1

算法的平均效率:n个数据,我们先假设能招到的概率,然后我们需要求得在第一次查找招到的概率、第二次查找招到的概率等等一直求,然后算得总的操作                                  次数。得出算法的平均效率


算法时间效率分析框架:

对于输入规模为n 的算法,我们可以统计它的基本操作执行次数,对其效率进行度量。


5.渐进符号:













6.基本的渐进效率类型:






图片用自:

点击打开链接


1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:149471次
    • 积分:2701
    • 等级:
    • 排名:第13339名
    • 原创:123篇
    • 转载:11篇
    • 译文:0篇
    • 评论:24条
    博客专栏
    最新评论