特征离散化

转载 2016年08月30日 19:09:05
作者:严林
链接:http://www.zhihu.com/question/31989952/answer/54184582
来源:知乎
著作权归作者所有,转载请联系作者获得授权。


在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:

0. 离散特征的增加和减少都很容易,易于模型的快速迭代;

1. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易扩展;

2. 离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0。如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰;

3. 逻辑回归属于广义线性模型,表达能力受限;单变量离散化为N个后,每个变量有单独的权重,相当于为模型引入了非线性,能够提升模型表达能力,加大拟合;

4. 离散化后可以进行特征交叉,由M+N个变量变为M*N个变量,进一步引入非线性,提升表达能力;

5. 特征离散化后,模型会更稳定,比如如果对用户年龄离散化,20-30作为一个区间,不会因为一个用户年龄长了一岁就变成一个完全不同的人。当然处于区间相邻处的样本会刚好相反,所以怎么划分区间是门学问;

6. 特征离散化以后,起到了简化了逻辑回归模型的作用,降低了模型过拟合的风险。


李沐曾经说过:模型是使用离散特征还是连续特征,其实是一个“海量离散特征+简单模型” 同 “少量连续特征+复杂模型”的权衡。既可以离散化用线性模型,也可以用连续特征加深度学习。就看是喜欢折腾特征还是折腾模型了。通常来说,前者容易,而且可以n个人一起并行做,有成功经验;后者目前看很赞,能走多远还须拭目以待。

逻辑回归LR的特征为什么要先离散化

在工业界,很少直接将连续值作为特征喂给逻辑回归模型,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点: 1. 稀疏向量内积乘法运算速度快,计算结果方便存储,容易sc...
  • yang090510118
  • yang090510118
  • 2014年09月22日 16:26
  • 8993

特征离散化

作者:严林 链接:http://www.zhihu.com/question/31989952/answer/54184582 来源:知乎 著作权归作者所有,转载请联系作者获得授权。 ...
  • liujianfei526
  • liujianfei526
  • 2016年08月30日 19:09
  • 401

逻辑回归处理离散变量

在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:0. 离散特征的增加和减少都很容易,易于模型的快速迭代;1. 稀疏...
  • Fluentwater
  • Fluentwater
  • 2017年05月13日 10:19
  • 690

特征离散化系列(一)方法综述

对现存的离散化方法进行概述总结,对现有离散化方法进行归类的层次化结构描述(hierarchical framework),为进一步发展铺路(pave the way),对典型的离散化方法(repres...
  • CalCuLuSearch
  • CalCuLuSearch
  • 2016年10月07日 18:56
  • 4334

连续特征离散化的方法

在FFM算法编码之前突然考虑到标准化的问题,例如大多数的属性都是0-1,出现的部分连续属性比如价格可能会很大,这些的情况会不会影响FFM的结果。 首先在网上搜了一下,连续特征离散化处理起到的效果是什...
  • u013818406
  • u013818406
  • 2017年04月23日 11:37
  • 2301

逻辑回归中的离散变量

在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系列0、1特征交给逻辑回归模型,这样做的优势有以下几点:0. 离散特征的增加和减少都很容易,易于模型的快速迭代;1. 稀疏...
  • shenxiaoming77
  • shenxiaoming77
  • 2016年09月06日 14:56
  • 1554

连续特征的离散化:在什么情况下将连续的特征离散化之后可以获得更好的效果?

参考:https://www.zhihu.com/question/31989952/answer/54184582 在工业界,很少直接将连续值作为逻辑回归模型的特征输入,而是将连续特征离散化为一系...
  • xbmatrix
  • xbmatrix
  • 2017年04月05日 23:22
  • 654

离散化特征的方法

在logistic regression上,需要把一些连续特征进行离散化处理。离散化除了一些计算方面等等好处,还可以引入非线性特性, 模型会更稳定 连续性变量转化成离散型变量大...
  • kl1411
  • kl1411
  • 2017年07月01日 21:16
  • 450

连续特征离散化达到更好的效果,特征选择的工程方法

http://www.zhihu.com/question/31989952 连续特征的离散化:在什么情况下将连续的特征离散化之后可以获得更好的效果? Q:CTR预估,发现CTR预估一般都是用LR,而...
  • lujiandong1
  • lujiandong1
  • 2015年11月23日 13:19
  • 5329

连续特征进行离散化的方法介绍与应用例子

RT,尤其在logistic regression上,需要把一些连续特征进行离散化处理。离散化除了一些计算方面等等好处,还可以引入非线性特性,也可以很方便的做cross-feature。 连续特...
  • shenxiaoming77
  • shenxiaoming77
  • 2016年04月08日 17:07
  • 6532
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:特征离散化
举报原因:
原因补充:

(最多只允许输入30个字)