自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(123)
  • 收藏
  • 关注

原创 WARNING: Running pip install with root privileges is generally not a good idea.

标志来安装,这样包会被安装到用户的家目录下的 Python 环境中,这通常不会导致权限问题。,因为它已经安装在系统上了。如果想为特定的用户安装 Python 包,应该使用。这个输出信息来自尝试使用。综上所述,不需要再次安装。

2024-02-22 17:25:57 1863

原创 QQ机器人开发报错

Yarn需要访问npm仓库来下载和安装包,如果网络连接有问题,或者由于某些原因(如网络防火墙、代理设置等)无法访问npm仓库,就会出现这种情况。:如果在中国或其他可能受网络限制的地区,可以考虑更换npm的源(registry)为国内的镜像源,如淘宝的npm镜像。如果尝试了以上步骤仍然无法解决问题,您可能需要联系网络管理员或服务提供商,以获取更多关于网络连接或防火墙设置的帮助。:如果在使用代理服务器,请确保Yarn的配置中设置了正确的代理。:有时候,Yarn的缓存可能会导致问题。文件中配置代理来实现。

2024-02-22 16:38:39 318

原创 说一下Adaboost,权值更新公式。当弱分类器是Gm时,每个样本的的权重是w1,w2...,请写出最终的决策公式。

权值更新公式是Adaboost算法关键的一部分,通过关注分类错误的样本并调整样本权重,使得模型更加关注错误样本,提高整体的分类准确率。权重更新公式为:wij^(m+1) = wij^(m) * exp(-αm) / Zm,其中Zm是归一化因子,保证样本权重之和为1。权重更新公式为:wij^(m+1) = wij^(m) * exp(αm) / Zm,其中Zm是归一化因子。其中,αm等于 ln((1 - ɛm) / ɛm),ɛm是该轮分类器的误差率,即被错误分类的样本权重之和。

2023-10-20 20:17:42 545

原创 简单介绍下logistics回归?

3. 模型建立:根据优化后的参数,建立逻辑回归模型。模型形式为:P(Y=1|X) = 1 / (1 + e^-(β0 + β1*x1 + β2*x2 + ... + βn*xn)),其中β0,β1,β2,...,βn是模型的系数,x1,x2,...,xn是输入特征。需要注意的是,逻辑回归是一个线性分类器,对于复杂的非线性模式,可能需要使用多项式特征或引入更复杂的模型。4. 模型预测:利用建立好的逻辑回归模型,对新的样本进行分类预测,计算概率值,并根据预测的概率值判定样本属于哪个类别。

2023-10-20 20:12:33 151

原创 L1和L2正则先验分别服从什么分布

需要注意的是,L1和L2正则化可以视为通过先验分布对模型参数的偏好进行约束,而不仅仅局限于具体的分布形式。高斯分布是一个常见的连续概率分布,具有钟形曲线形状。- 先验假设:L2正则化的先验假设是,模型参数在不同程度上对预测结果都有一定的贡献或相关性,但对结果的影响应保持接近于零的平衡。- 先验假设:L1正则化的先验假设是,大多数模型参数是不相关的或对预测结果没有显著贡献,只有少数参数是重要的并与预测结果相关。L1正则化和L2正则化可以被视为模型参数的先验分布,在贝叶斯统计学中,它们对应了不同的先验假设。

2023-10-20 20:09:26 199

原创 L1和L2的区别

定义:L1范数是向量元素的绝对值之和,也称为曼哈顿距离或稀疏范数。- 定义:L2范数是向量元素平方的总和的平方根,也称为欧几里德范数。- 选择性:L1范数具有产生稀疏解的能力,倾向于将某些特征的系数设为零,而L2范数倾向于使所有特征的系数都尽可能小但非零。L范数和L2范数是在正则化和特征选择中经常使用的正则化项,它们在度量向量的方式、特点和应用方面有所区别。- L1范数产生的解通常具有较少的非零系数,可以用于特征选择和过滤掉不相关的特征。- 平滑性:L1范数的解是一个稀疏的解,L2范数的解更加平滑。

2023-10-20 20:02:15 183

原创 线性分类器与非线性分类器的区别以及优劣

过拟合风险:由于非线性分类器的灵活性,有可能对训练数据过拟合,特别是在训练数据较少或模型过于复杂的情况下需要引入适当的正则化技术来控制过拟合。- 灵活性:线性分类器的决策边界是线性的,因此只能对线性可分或近似线性可分的数据进行分类。对于非线性数据,线性分类器的性能可能较差。在实际应用中,通常建议首先尝试线性分类器,然后根据问题的复杂性和线性假设的适用性,考虑使用非线性分类器来提高模型性能。- 灵活性:非线性分类器可以更好地适应非线性数据和复杂的决策边界,因此在处理复杂领域的问题时具有更高的灵活性。

2023-10-20 20:00:49 472

原创 谈谈判别式模型和生成式模型?

生成式模型的目标是从数据中学习整个联合概率分布,即P(X,Y),其中X是输入特征,Y是类别标签。生成式模型学习的是数据的边缘概率和条件概率分布,可以进行概率推断和生成新的样本。判别式模型的目标是建立特征和类别之间的条件概率分布,即P(Y|X),其中Y是类别标签,X是输入特征。- 生成式模型关注的是建模联合概率分布P(X,Y),即同时建模输入特征和类别之间的联合分布,可以进行样本生成和概率推断。- 判别式模型关注的是直接建模条件概率分布P(Y|X),即给定输入特征预测类别的概率,忽略了样本生成过程。

2023-10-20 19:58:29 56

原创 协方差和相关性有什么区别?

总的来说,协方差和相关性都可以用来衡量两个变量之间的关系,但相关性是一种标准化的度量,更直观地反映了变量之间的线性关系。- 相关性是一种标准化的度量,通过抵消了变量之间的量纲差异,使得比较不同数据集上的相关性更为直观。协方差(Covariance)和相关性(Correlation)都是用于衡量两个变量之间的关系,但它们在度量的方面和解释的含义上存在一些区别。相关性的值介于固定的范围内。- 相关性是单位无关的,它不受变量单位和量纲缩放的影响。相关性只衡量变量之间的线性关系,而不受变量单位的影响。

2023-10-20 19:56:57 700

原创 xgboost如何寻找最优特征?是有放回还是无放回的呢?

需要注意的是,XGBoost是通过贪心算法逐步分裂决策树的,而不是像一些基于全局优化的算法那样,在全部特征上进行全局搜索。这种贪心算法一次只考虑一个特征和一个切分点,并不需要在每次分裂时考虑所有特征。因此,在每一次分裂时,对特征的选择是无放回的,即不考虑已使用的特征。XGBoost使用了一种贪心算法来选择最优的分裂点,其中每个特征的所有可能分割点都被考虑。- 对该特征的所有可能切分点进行排序,以便按顺序尝试每个切分点。- 计算切分点的增益,其中增益代表了在该切分点处分裂的好处。

2023-10-20 19:55:23 129

原创 为什么xgboost要用泰勒展开,优势在哪里?

1. 引入二阶信息:XGBoost在泰勒展开中使用了二阶导数(Hessian矩阵),主要是为了引入更多的学习率信息。传统的梯度提升树只使用了一阶导数(梯度)信息。总的来说,XGBoost使用泰勒展开有助于引入二阶信息、加速模型训练、提供准确的预测和模型正则化,从而提高模型的性能和鲁棒性。4. 模型正则化:XGBoost在泰勒展开的基础上引入了正则化项,如L1和L2正则化,用于控制模型的复杂度和过拟合的风险。通过引入二阶信息,可以更精确地确定每一步的学习率,从而减少迭代的次数,提高训练速度。

2023-10-20 19:53:24 334

原创 说说常见的损失函数?

这些是机器学习中常见的损失函数,每种损失函数适用于不同的任务类型和模型。选择合适的损失函数取决于问题的特性和模型的目标。此外,还有其他的损失函数,如Huber损失、Poisson损失、指数损失等,根据具体问题的要求选取适合的损失函数非常重要。对数损失函数也是分类问题中的常见损失函数,适用于二分类问题。它通过衡量预测值与真实标签的差异来评估模型的性能,并希望将正确标签的概率预测值推近到1,将错误标签的概率预测值推近到0。均方误差是回归问题中常用的损失函数,它计算预测值与真实值之间的平方差,并求取其平均值。

2023-10-20 19:51:29 86

原创 机器学习中的正则化到底是什么意思?

正则化的权衡因素在于选择合适的正则化系数(正则化强度),过小的正则化系数可能导致过拟合,而过大的正则化系数可能导致欠拟合。在器学习中,正则化是一种用来控制模型复杂度和防止过拟合的技术。1. L1正则化(L1 Regularization):也称为Lasso正则化,通过在损失函数中添加参数向量的L1范数作为惩罚项,使得参数中的某些权重趋向于稀疏,即倾向于选择更少的特征。总而言之,正则化是机器学习中的一种有效技术,用于控制模型的复杂度和改善模型的泛化能力,通过在损失函数中引入惩罚项来约束模型的参数或特征权重。

2023-10-20 19:49:41 142

原创 简单说下有监督学习和无监督学习的区别

无监督学习的结果也可以用于有监督学习的特征提取或预处理阶段,从而改善有监督学习的效果。- 无监督学习的目标是从未标记的数据中发现数据的结构、模式或关系,以便于数据的组织、分类、聚类等处理,而无需对数据进行标记或给出具体的目标变量。- 无监督学习的建模方式通常是通过计算数据之间的相似性、距离或概率分布,来对数据进行聚类、降维、关联规则挖掘等处理,以发现数据的结构或模式。- 无监督学习广泛应用于聚类、异常检测、降维等问题,如用户分群、图像分割和异常交易检测,其中标签是未知的,模型通过学习来发现数据的内在结构。

2023-10-20 19:48:23 709

原创 LR与线性回归的区别与联系

逻辑回归的模型形式为:P(Y=1|X) = 1 / (1 + e^-(β0 + β1*x1 + β2*x2 + ... + βn*xn))。逻辑回归(Logistic Regression)和线性回归(Linear Regression)是两种不同的回归分析方法,它们在目的、模型形式和应用领域上存在一些区别,同时也有一些联系点。总的来说,线性回归和逻辑回归是两种不同的回归方法,适用于不同类型的问题,分别用于连续数值输出和二元分类。- 逻辑回归输出的是概率值,通常在0和1之间,表示属于正类别的概率。

2023-10-20 19:45:26 89

原创 什么是最大熵

最大熵(Maximum Entropy)是一种概率建模和信息理论中的原理和方法,用于估计概率分布或模型的特征权重,以满足已知约束条件。最大熵的思想源于信息论,它强调在缺乏先验知识的情况下,应该采用最均匀或最不确定性的概率分布,以避免引入不必要的偏见。5. 最大熵模型(Maximum Entropy Model):最大熵模型是通过估计特征权重,使得概率分布在满足约束条件的同时熵最大的模型。熵越高,表示不确定性越大。在最大熵模型中,特征可以是任何可以用于描述数据或约束模型的属性,如统计特征、观察到的数据点等。

2023-10-20 19:43:57 287

原创 对所有优化问题来说, 有没有可能找到比現在已知算法更好的算法?

"P versus NP"问题的核心是,是否P类问题和NP类问题是相同的,即是否NP类问题中的每一个问题都可以在多项式时间内解决?但如果P≠NP,那么意味着存在一些NP问题,它们在多项式时间内不可能找到问题的解,除非P=NP的猜想被证明为错误。2. NP类问题:这些问题是可以在多项式时间内验证解的问题,但目前没有已知的多项式时间算法可以在所有情况下找到问题的解。1. P类问题:这些问题是可以在多项式时间内解决的问题,也就是说,存在一个有效算法可以在多项式时间内找到问题的解。

2023-10-20 19:40:46 43

原创 说说共轭梯度法?

在每个迭代步骤中,共轭梯度法计算一个新的搜索方向,并利用这个方向在一维空间上进行线搜索,找到使目标函数最小化的步长。共轭梯度法(Conjugate Gradient Method)是一种常用的数值优化算法,用于求解具有二次目标函数的线性方程组或最小化二次函数的问题。与传统的梯度下降法不同,共轭梯度法在每个迭代步骤中以更高效的方式计算更新方向,从而加速收敛速度。3. 适用于大规模问题:共轭梯度法特别适用于处理大规模的线性方程组,因为它仅需要在每个迭代步骤中计算矩阵向量乘积,而不需要存储整个矩阵。

2023-10-20 19:39:24 477

原创 请说说随机梯度下降法的问题和挑战?

许多改进和变种的SGD算法已经被提出,例如Mini-batch SGD、Momentum、Adagrad、Adam等,用于解决部分SGD的问题,提高收敛速度和稳定性。2. 学习率的选择:选择合适的学习率是SGD的一个挑战。学习率太大可能导致不稳定的收敛或甚至发散,而学习率太小可能导致收敛速度慢。5. 数据不平衡:在数据集中存在类别不平衡问题时,SGD可能导致模型偏向于训练样本较多的类别,而对于少数类别的训练不足。7. 学习率衰减:学习率的衰减策略也需要精心选择,以平衡快速收敛和避免过早停止训练的问题。

2023-10-20 19:37:21 129

原创 kmeans的复杂度?

因此,迭代的时间复杂度取决于数据点的数量(N)、簇的数量(k)以及数据点的维度(通常表示为d)。总的来说,K均值算法的迭代时间复杂度通常在O(iter * N * k * d)范围内,其中iter是迭代的次数。- 选择初始质心的时间复杂度为O(k * N),其中k是簇的数量,N是数据点的数量。- 如果使用更复杂的初始化方法,例如K-Means++,则初始化的复杂度会更高,但通常仍然是线性的,因此总的初始化时间复杂度可以表示为O(k * N)。- 分配每个数据点到最近质心的时间复杂度通常是O(N * k)。

2023-10-20 19:35:55 1086

原创 什么是拟牛顿法(Quasi-Newton Methods)?

然而,需要注意的是,拟牛顿法也有一些局限性,例如在处理非光滑函数或具有大规模参数的问题时可能不如梯度下降等其他优化方法有效。它们的主要目标是寻找一个函数的局部最小值,而不需要计算函数的导数或梯度信息。拟牛顿法的名称来源于其模拟了牛顿法(Newton's Method)的思想,但与牛顿法不同,拟牛顿法使用了一个近似的Hessian矩阵(牛顿法使用精确的Hessian矩阵)来更新搜索方向。2. 迭代优化:拟牛顿法是一种迭代算法,它从一个初始点开始,然后在每一步中计算一个搜索方向,并更新当前点以接近局部最小值。

2023-10-20 19:27:17 901

原创 说说核函数

其形式为:K(x, y) = (αx · y + c)^d,其中α是一个可调参数,c是一个常数,d是多项式的次数。除了上述核函数之外,还可以使用自定义的核函数,只要它满足核函数的性质,即正定性(positive definiteness)。径向基函数核函数是一种常用的非线性核函数,它通过计算样本点之间的距离来度量相似性。Sigmoid核函数也用于处理非线性数据,其形式为:K(x, y) = tanh(αx · y + c),其中α和c是可调参数。线性核函数是最简单的核函数之一,它用于处理线性可分的数据。

2023-10-20 19:22:50 116

原创 熵、联合熵、条件熵、相对熵、互信息的定义

其中,ΣΣ 表示对所有可能的X和Y的取值(x, y)进行求和,P(x, y)是X取值x且Y取值y的联合概率,P(x)和P(y)分别是X和Y的边缘概率。其中,ΣΣ 表示对所有可能的X和Y的取值(x, y)进行求和,P(y|x)是在X取值x的条件下,Y取值y的概率。其中,ΣΣ 表示对所有可能的X和Y的取值(x, y)进行求和,P(x, y)是X取值x且Y取值y的联合概率。其中,Σ表示对所有可能的取值x进行求和,P(x)是X取值x的概率,log2表示以2为底的对数。联合熵是多个随机变量的熵之和。

2023-10-19 11:55:06 294

原创 牛顿法和梯度下降法有什么不同?

总的来说,梯度下降法是一种简单且易于理解的优化算法,适用于大规模数据和参数空间,而牛顿法可以更快地收敛,但对参数空间的变化敏感且计算复杂,适用于参数较少的情况。牛顿法(Newton's Method)和梯度下降法(Gradient Descent)是两种常用的优化算法,用于求解目标函数的最小值,但它们的工作原理和更新参数的方式有所不同。- 牛顿法:适用于参数较少的情况,特别是在参数空间平坦的地方,因为牛顿法倾向于寻找局部优化而非全局优化,且计算逆Hessian矩阵的成本较高。更新幅度与学习率有关。

2023-10-19 11:42:07 360

原创 说说梯度下降法

梯度下降法的成功依赖于合适的学习率的选择,如果学习率太小,收敛速度可能会很慢,而如果学习率太大,可能会导致不稳定的收敛甚至发散。其核心思想是通过计算目标函数关于参数的梯度(导数),然后朝着梯度下降最陡峭的方向来更新参数,从而逐渐接近或到达目标函数的最小值。梯度下降法有几种变体,包括批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent),以及小批量梯度下降(Mini-Batch Gradient Descent)。

2023-10-19 11:39:24 30

原创 神经网络参数共享(parameter sharing)是指什么?

神经网络参数共享(Parameter sharing)是一种在神经网络中的权重和偏差参数被多次重复使用的技术。在CNNs中,卷积层通常使用相同的卷积核(滤波器)来处理图像的不同区域。这种共享参数的方式可以减少模型的参数数量,提高模型的效率,并使其对平移不变性具有更强的适应性,因为相同的特征检测器在图像的不同位置都能够识别相同的特征。举个例子,假设一个CNN具有多个卷积层,每个卷积层都使用相同的卷积核,这些卷积核的参数是共享的,这样模型可以学习提取相同的特征,但在不同位置和尺度上。

2023-10-19 11:02:30 949

原创 什么是熵?

熵是一个信息理论中的概念,用于衡量不确定性或混乱的度量。在信息理论和统计学中,熵通常表示为H(X),其中X是一个随机变量。熵用来描述随机变量的不确定性,越高的熵表示随机变量具有更大的不确定性或信息量。熵也可以用于连续随机变量,但计算方式会有所不同。它在信息理论、统计学、热力学等领域有广泛的应用,用来衡量信息的不确定性或系统的混乱程度。其中,Σ表示对所有可能的取值x进行求和,P(x)是X取值x的概率,log2表示以2为底的对数。

2023-10-19 11:01:23 261

原创 如何理解YOLO:YOLO详解

6. **非极大值抑制**:在YOLO的输出中,可能存在重叠的边界框,为了避免重复检测,采用非极大值抑制(Non-Maximum Suppression,NMS)来选择具有最高置信度的边界框,并剔除其他冗余的边界框。7. **速度与性能平衡**:YOLO的全局观点和单一网络模型使其在速度上具有优势。2. **回归问题**:YOLO将目标检测问题转化为回归问题,即通过预测边界框的位置和目标类别来完成检测任务。3. **单个网络模型**:YOLO包含一个单一的卷积神经网络模型,并通过网络的最后一层输出预测。

2023-10-19 10:50:51 169

原创 请简单说下YOLOv1,v2,v3,v4各自的特点与发展史

YOLOv1首次引入了端到端的检测框架,而后续版本不断改进网络架构和训练策略,以提高检测精度和处理更多场景的能力。YOLOv4作为最新版本,具有更多创新性的技术,提供了更高的性能水平。- 为了处理多类别检测问题,YOLOv1采用了VOC数据集中20个类别的训练,但可扩展到更多类别。- 引入了多尺度检测,使用不同大小的锚框和特征图,以改善对不同尺寸目标的检测。- 引入了多尺度训练和预测,通过不同大小的锚框进行检测,提高了小目标的性能。- 使用三个不同尺度的YOLO层进行检测,提高了性能和多尺度处理能力。

2023-10-19 10:47:37 83

原创 YOLOv3的网络结构

5. **YOLO Layer**:最后一个Convolutional层后是YOLO层,其中包含了锚框,用于预测目标的位置、类别概率等。需要注意的是,YOLOv3的网络结构中有三个YOLO层,分别位于不同尺度的特征图之后。2. **Feature Pyramid**:多个特征图用于检测不同尺度的目标。这些特征图通过卷积操作生成。3. **Upsampling**:将较低分辨率的特征图上采样,以与较高分辨率的特征图进行特征融合。4. **Convolutional**:一系列卷积层用于进一步处理特征图。

2023-10-19 10:41:41 42

原创 如何理解Faster R-CNN

4. **Anchor Boxes**:RPN使用"anchor boxes"作为候选框的基础,这些是一组预定义的不同尺寸和宽高比的框。3. **分类和边界框回归**:在第二阶段,Faster R-CNN采用一个卷积神经网络来对RPN提出的候选框进行分类,以确定这些候选框中是否包含目标,并进行类别分类。此外,它还进行了边界框回归,以更准确地定位目标的位置。总之,Faster R-CNN是一种经典的目标检测方法,通过两阶段的框架和专门设计的RPN,它能够提供较高的检测精度,特别适用于需要高精度的应用场景。

2023-10-19 10:25:51 52

原创 one-stage和two-stage目标检测方法的区别和优缺点?

一阶段目标检测方法通过一次计算完成物体位置估计和类别分类,速度较快,但在小目标的定位和检测上容易产生较高的误检率。而两阶段目标检测方法通过两个独立的网络模型实现,精度较高,尤其在大目标和复杂场景中有较好的性能,但速度较慢。- 包含两个独立的网络模型:生成候选目标框的区域建议网络(Region Proposal Network,RPN)和对这些框进行分类和边界框回归的网络。一阶段(one-stage)与两阶段(two-stage)目标检测方法是在深度学习中常用的目标检测方法。

2023-10-19 10:23:50 4829

原创 简述孪生随机网络(Siamese Network)

在训练过程中,通常使用一些损失函数,如三元损失函数(Triplet Loss)或对比损失函数(Contrastive Loss),来指导孪生网络学习适当的特征表示,以使相似样本的特征表示更加接近,不同样本的特征表示更加远离。孪生随机网络的设计使其在对比学习和度量学习等问题上表现出了优越性能,并且可以用于多种不同的应用场景,为处理具有比较性质的任务提供了一种有效的方法。3. 特征对比:两个子网络的特征表示被组合或连接,并通过一些操作进行对比,以计算输入样本之间的相似度或距离。

2023-10-19 10:10:32 114

原创 列举出常见的损失函数?

2. 交叉熵损失(Cross Entropy Loss):交叉熵损失是分类问题中常用的损失函数,特别是在多类别分类任务中。它通过衡量模型预测值与真实标签之间的边界差距,来鼓励模型对正确分类的样本有更高的边界得分。Hinge Loss的公式为:max(0, 1 - y * f(x)),其中y表示真实标签,f(x)表示模型的预测分数。1. 均方误差(Mean Squared Error,MSE):MSE是回归任务中常用的损失函数,用于衡量模型预测值与真实值之间的平均平方差。

2023-10-19 10:10:20 54

原创 DPM(Deformable Parts Model)算法流程

DPM算法通过使用部件模型来建模目标物体的结构和外观变化,并通过特征提取、部件匹配和分类器评分等步骤来完成目标检测任务。DPM在不同的目标物体识别和检测任务中得到广泛应用,能够有效地处理物体的变形、遮挡和尺度变化等问题。5. 分类器训练和得分评估:使用SVM(Support Vector Machine)等分类器来对匹配得到的候选框进行分类和评分,以确定是否包含目标物体。3. 部件模型建立:将目标物体表示为多个部件的组合,每个部件都有特定的位置和形状。这些部件模型是由训练数据中的正样本来学习得到的。

2023-10-19 10:10:03 313

原创 什么是NMS(Non-maximum suppression 非极大值抑制)?

NMS是许多目标检测算法(如RCNN、YOLO等)中常用的一种技术,它能够在提供多个候选框时,过滤掉冗余的重叠框,从而得到更精确和准确的目标检测结果。NMS的基本思想是根据检测框的置信度或得分,选择其中得分最高的一个作为优先保留的检测结果,并抑制与该检测结果高度重叠的其他检测结果。通过NMS,可以有效地删除重叠度高的冗余边界框,仅保留最具代表性的物体检测结果。2. 选取最高得分的框:从排好序的检测结果中选取得分最高的检测框,并将其加入最终的检测结果列表。5. 重复步骤2-4,直至所有的检测框都被处理完毕。

2023-10-19 10:09:47 207

原创 遇到class-imbalanced data(数据类目不平衡)问题怎么办?

常见的重新采样方法包括欠采样(Under-sampling,即减少多数类样本),过采样(Over-sampling,即增加少数类样本)以及合成采样(Synthetic Sampling,如SMOTE算法),根据具体情况选择适当的方法。2. 类别权重(Class Weighting):通过为不同类别赋予不同的权重,使得模型更加关注少数类别的训练样本。3. 数据生成(Data Generation):对于少数类别的数据,可以采用生成新的合成数据样本的方法,以增加其样本数量。

2023-10-18 19:12:18 95

原创 FCN与CNN最大的区别?

FCN采用全卷积结构,能够适应可变尺寸的输入图像,输出与输入图像尺寸相同的密集预测结果。而FCN采用全卷积结构,去除了全连接层,将卷积操作应用于所有的空间维度,使网络可以接受任意尺寸的输入图像并输出相应尺寸的预测结果。此外,FCN使用了特定的损失函数,如交叉熵损失或像素级的损失函数,以适应图像分割任务的多标签预测。2. 输入和输出:CNN网络通常接受固定尺寸的输入图像并输出具体的类别标签或数值预测。而FCN能够处理可变尺寸的输入图像,并输出与输入图像同样尺寸的密集预测结果,可用于图像分割和语义分割任务。

2023-10-18 19:10:43 377

原创 输入图片尺寸不匹配CNN网络input时候的解决方式?

它通过在不同尺度上进行池化操作,提取各个尺度的特征,然后将这些特征进行融合,以获得更具丰富表示能力的特征。通过在不同尺度上处理图像,可以获得不同层次的特征表示,以增强网络的感受野和视觉表达能力。当输入图像较大时,可以通过裁剪或缩放来调整图像尺寸。通过裁剪网络中部分层或通道的权重值,可以使网络适应不同尺寸的输入图像。2. 图像缩放:将图像通过插值或调整尺寸的方式进行缩放,以适应网络的输入尺寸。根据输入图像的尺寸和网络架构的要求,可以找到合适的解决方式,以确保输入图像与CNN网络输入大小的匹配。

2023-10-18 19:04:57 848

原创 简述encode和decode思想

1. Encode(编码):编码是指将信息转换为特定的编码形式或表示形式的过程。编码可以根据特定的规则或算法进行,常见的编码包括二进制编码、符号编码、压缩编码等。编码的目的是将信息转换为更有效、更方便处理或传输的形式。2. Decode(解码):解码是指将编码后的信息恢复为原始的形式或所需的形式的过程。在解码过程中,使用与编码相反的算法或规则将编码后的数据转换回原始的形式。Encode编码)和Decode(解码)是在信息处理中常用的概念,用于表示将信息从一种形式转换为另一种形式的过程。

2023-10-18 19:03:42 1006

Axure RP 7.0 免安装

Axure RP 7.0 免安装

2023-09-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除